精英家教网 > 高中数学 > 题目详情
9.执行如图所示程序框图,若输出的结果为5,则输入的实数a的范围是(  )
A.[6,24)B.[24,120)C.(-∞,6)D.(5,24)

分析 模拟程序的运行,依次写出每次循环得到的x,n的值,由题意判断退出循环的条件即可得解.

解答 解:模拟程序的运行,可得
n=1,x=1
不满足条件x>a,执行循环体,x=1,n=2
不满足条件x>a,执行循环体,x=2,n=3
不满足条件x>a,执行循环体,x=6,n=4
不满足条件x>a,执行循环体,x=24,n=5
此时,由题意应该满足条件x>a,退出循环,输出n的值为5.
可得:6≤a<24.
故选:A.

点评 本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn
(1)求数列{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{4}{{a}_{n}{a}_{n+1}}$(n∈N*),记数列{cn}的前n项和为Tn,求使Tn>$\frac{4}{15}$成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分别为边AC,AB的中点,点F,G分别为线段CD,BE的中点.将△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.点Q为线段A1B上的一点,如图2.

(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q£?使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当$\overrightarrow{{A_1}Q}=\frac{3}{4}\overrightarrow{{A_1}B}$时,求直线GQ与平面A1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在明朝程大位《算法统宗》中有首依等算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,丙有(  )
A.100钱B.101钱C.107钱D.108钱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=||x|-2|+x-3.
(1)画出y=f(x)的图象.
(2)解不等式f(x)<$\frac{1}{2}$x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,若an+1(an+1)=an,a1=1,则a6=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x,y满足:$\left\{\begin{array}{l}{x+2y-19≥0}\\{x-y+8≥0}\\{2x+y-14≤0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值与最小值之和为(  )
A.$\frac{25}{4}$B.$\frac{27}{4}$C.$\frac{29}{4}$D.$\frac{31}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.阅读右边的程序框图,运行相应程序,输出s的值为87.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在3000与8000之间,有多少个没有重复数字的:
(1)四位偶数;
(2)能被5整除的四位奇数.

查看答案和解析>>

同步练习册答案