精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=lnx-\frac{x+a}{x}$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:x>0时,$\frac{1}{x+1}<\frac{ln(x+1)}{x}<1$;
(Ⅲ)比较三个数:${(\frac{100}{99})^{100}}$,${(\frac{101}{100})^{100}}$,e的大小(e为自然对数的底数),请说明理由.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)不等式$\frac{1}{x+1}<\frac{ln(x+1)}{x}$等价于$ln(x+1)>\frac{x}{x+1}$,令t=x+1,则x=t-1,由x>0得t>1,问题等价于:$lnt>\frac{t-1}{t}$,根据函数的单调性证明即可;
(Ⅲ)根据$\frac{ln(x+1)}{x}<1$,令$x=\frac{1}{100}$,得到${({\frac{101}{100}})^{100}}<{e}$;再根据$\frac{ln(x+1)}{x}>\frac{1}{x+1}$(x>0),得到$(1+\frac{1}{x})ln(x+1)>1$,判断大小即可.

解答 解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为$f'(x)=\frac{1}{x}-\frac{x-(x+a)}{x^2}=\frac{x+a}{x^2}$,
当a≥0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;
当a<0时,由f'(x)<0得0<x<-a,由f'(x)>0得x>-a,
所以函数f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增.
(Ⅱ)证明:①因为x>0,不等式$\frac{1}{x+1}<\frac{ln(x+1)}{x}$等价于$ln(x+1)>\frac{x}{x+1}$,
令t=x+1,则x=t-1,由x>0得t>1,
所以不等式$ln(x+1)>\frac{x}{x+1}$(x>0)等价于:$lnt>\frac{t-1}{t}$,即:$lnt-\frac{t-1}{t}>0$(t>1),
由(Ⅰ)得:函数$g(t)=lnt-\frac{t-1}{t}$在(1,+∞)上单调递增,
所以g(t)>g(1)=0,即:$ln(x+1)>\frac{x}{x+1}$.
②因为x>0,不等式$\frac{ln(x+1)}{x}<1$等价于ln(x+1)<x,
令h(x)=ln(x+1)-x,则$h'(x)=\frac{1}{x+1}-1=\frac{-x}{x+1}$,所以h'(x)<0,
所以函数h(x)=ln(x+1)-x在(0,+∞)上为减函数,
所以h(x)<h(0)=0,即ln(x+1)<x.
由①②得:x>0时,$\frac{1}{x+1}<\frac{ln(x+1)}{x}<1$
(Ⅲ)由(Ⅱ)得:x>0时,$\frac{ln(x+1)}{x}<1$,
所以令$x=\frac{1}{100}$,得$100×ln(\frac{1}{100}+1)<1$,即$ln{({\frac{101}{100}})^{100}}<1$,所以${({\frac{101}{100}})^{100}}<{e}$;
又因为$\frac{ln(x+1)}{x}>\frac{1}{x+1}$(x>0),所以$(1+\frac{1}{x})ln(x+1)>1$,
令$x=\frac{1}{99}$得:$100×ln\frac{100}{99}>1$,所以$ln{({\frac{100}{99}})^{100}}>1$,从而得${({\frac{100}{99}})^{100}}>{e}$.
所以,${({\frac{101}{100}})^{100}}<{e}<{({\frac{100}{99}})^{100}}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2bcosA.
(1)求角B的大小;
(2)若b=2$\sqrt{3}$,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a,b均为正数,且ab-a-2b=0,则$\frac{a^2}{4}-\frac{2}{a}+{b^2}-\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下结论正确的是(  )
A.一个圆柱的侧面展开图是一个长、宽分别为6和4的长方形,则这个圆柱的体积一定是等于$\frac{36}{π}$
B.命题“?x0∈R,x02+x0-1<0”的否定是“?x∈R,x2+x-1>0”
C.若ω≠0时,“φ=kπ+$\frac{π}{2}$(k∈Z”是“函数f(x)=sin(ωx+φ)是偶函数”的充要条件
D.已知⊙O:x2+y2=r2,定点P(x0,y0),直线l:x0x+y0y=r2,若点P在⊙O内,则直线l与⊙O相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角梯形ABCD中,AB=2,CD=CB=1,∠ABC=90°,平面ABCD外有一点E,平面ADE⊥平面ABCD,AE=ED=1.
(1)求证:AE⊥BE;
(2)求二面角C-BE-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=log0.50.3,b=log30.5,c=0.50.3,则a,b,c的大小关系是(  )
A.a>c>bB.c>a>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{2-3i}{3+2i}$+z对应的点的坐标为(2,-2),则z在复数平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知Sn是数列{an}的前n项和,a1=$\frac{3}{2}$且2Sn-Sn-1=n2+3n-1(n≥2),则an=2n-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=2sin(ωx+φ)(ω>0),x∈[{-\frac{π}{12},\frac{2π}{3}}]$的图象如图所示,若f(x1)=f(x2),且x1≠x2,则f(x1+x2)=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案