精英家教网 > 高中数学 > 题目详情
17.以下结论正确的是(  )
A.一个圆柱的侧面展开图是一个长、宽分别为6和4的长方形,则这个圆柱的体积一定是等于$\frac{36}{π}$
B.命题“?x0∈R,x02+x0-1<0”的否定是“?x∈R,x2+x-1>0”
C.若ω≠0时,“φ=kπ+$\frac{π}{2}$(k∈Z”是“函数f(x)=sin(ωx+φ)是偶函数”的充要条件
D.已知⊙O:x2+y2=r2,定点P(x0,y0),直线l:x0x+y0y=r2,若点P在⊙O内,则直线l与⊙O相交

分析 求出母线长为6,底面周长为4时的圆柱体积判断A;写出命题的否定判断B;由充分必要条件的判定方法判断C;由已知求出原点到直线的距离,比较与半径的关系判断D.

解答 解:当母线长为6时,圆柱的底面周长为2πr=4,r=$\frac{2}{π}$,则圆柱的体积V=$π×(\frac{2}{π})^{2}×6=\frac{24}{π}$,故A错误;
命题“?x0∈R,x02+x0-1<0”的否定是“?x∈R,x2+x-1≥0”,故B错误;
ω≠0,由φ=kπ+$\frac{π}{2}$,得f(x)=sin(ωx+φ)=sin(ωx+kπ+$\frac{π}{2}$)=cos(ωx+kπ)=±cosωx,f(x)为偶函数,
反之,若函数f(x)=sin(ωx+φ)是偶函数,则f(x)-f(-x)=0,即sin(ωx+φ)-sin(-ωx+φ)=0,
∴2cosφ•sinωx=0,则φ=kπ+$\frac{π}{2}$(k∈Z),故若ω≠0时,“φ=kπ+$\frac{π}{2}$(k∈Z”是“函数f(x)=sin(ωx+φ)是偶函数”的充要条件;
由点P在⊙O内,得${{x}_{0}}^{2}+{{y}_{0}}^{2}<{r}^{2}$,而原点O到直线l:x0x+y0y=r2的距离d=$\frac{{r}^{2}}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}}}>r$,∴直线l与⊙O相离,故D错误.
故选:C.

点评 本题考查命题的真假判断与应用,考查学生对基础知识的综合运用与掌握,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在3000与8000之间,有多少个没有重复数字的:
(1)四位偶数;
(2)能被5整除的四位奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列命题
①函数f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)的图象关于x=π对称的图象的函数解析式为y=sin($\frac{x}{2}$-$\frac{π}{6}$);
②函数f(x)=$\sqrt{x-1}$+$\frac{1}{x}$在定义域上是增函数;
③函数f(x)=|log2x|-($\frac{1}{2}$)x在(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
其中真命题的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线G:y2=2px(p>0),过焦点F的动直线l与抛物线交于A,B两点,线段AB的中点为M.
(1)当直线l的倾斜角为$\frac{π}{4}$时,|AB|=16.求抛物线G的方程;
(2)对于(1)问中的抛物线G,若点N(3,0),求证:|AB|-2|MN|为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足:${a_1}=2\;,\;{a_{n+1}}=1-\frac{1}{a_n}$,设数列{an}的前n项和为Sn,则S2017=(  )
A.1007B.1008C.1009.5D.1010

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当x≠1且x≠0时,数列{nxn-1}的前n项和Sn=1+2x+3x2+…nxn-1(n∈N*)可以用数列求和的“错位相减法”求得,也可以由x+x2+x3+…+xn(n∈N*)按等比数列的求和公式,先求得x+x2+x3+…+xn=$\frac{x-{x}^{n+1}}{1-x}$,两边都是关于x的函数,两边同时求导,(x+x2+x3+…+xn)′=($\frac{x-{x}^{n+1}}{1-x}$)′,从而得到:Sn=1+2x+3x2+…+nxn-1=$\frac{1-(n+1){x}^{n}+n{x}^{n+1}}{(1-x)^{2}}$,按照同样的方法,请从二项展开式(1+x)n=1+${C}_{n}^{1}$x+C${\;}_{n}^{2}$x2+…+C${\;}_{n}^{n}$xn出发,可以求得,Sn=1×2×C${\;}_{n}^{1}$+2×3×C${\;}_{n}^{2}$+3×4×C${\;}_{n}^{3}$+…+n×(n+1)×C${\;}_{n}^{n}$(n≥4)的和为n(n+3)2n-2(请填写最简结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=lnx-\frac{x+a}{x}$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:x>0时,$\frac{1}{x+1}<\frac{ln(x+1)}{x}<1$;
(Ⅲ)比较三个数:${(\frac{100}{99})^{100}}$,${(\frac{101}{100})^{100}}$,e的大小(e为自然对数的底数),请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x+y+$\sqrt{2}$=0相切.A,B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E,F两点.
(1)求椭圆C的方程;
(2)当四边形AEBF面积取最大值时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数g(x)=ex+3x-a(a∈R,e为自然对数底数),若存在x0∈(-∞,1],使g(g(x0))=x0,则实数a的取值范围为(  )
A.(-∞,$\sqrt{e}$+$\frac{1}{2}$]B.(-∞,e+2]C.(-∞,e+$\frac{1}{2}$]D.(-∞,$\sqrt{e}$+2]

查看答案和解析>>

同步练习册答案