精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足:${a_1}=2\;,\;{a_{n+1}}=1-\frac{1}{a_n}$,设数列{an}的前n项和为Sn,则S2017=(  )
A.1007B.1008C.1009.5D.1010

分析 根据题意,求得数列{an}是以3为周期的数列,且S3=2+$\frac{1}{2}$-1=$\frac{3}{2}$,从而求得S2017的值

解答 解:∵a1=2,an+1=1-$\frac{1}{{a}_{n}}$,
∴a2=1-$\frac{1}{{a}_{1}}$=1-$\frac{1}{2}$=$\frac{1}{2}$,
a3=1-2=-1,
a4=1+1=2,

∴数列{an}是以3为周期的数列,
∵S3=2+$\frac{1}{2}$-1=$\frac{3}{2}$,
2017=3×672+1,
∴S2017=672×$\frac{3}{2}$+1=1010,
故选:D.

点评 本题考查了数列周期性和数列的前n项和,考查了学生的运算能力和归纳能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.计算定积分${∫}_{-1}^{1}$(x2+sin3x)dx=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z=1+i,其中i为虚数单位,则复数1+z+z2+…+z2017的实部为(  )
A.1B.-1C.21009D.-21009

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a,b均为正数,且ab-a-2b=0,则$\frac{a^2}{4}-\frac{2}{a}+{b^2}-\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下结论正确的是(  )
A.一个圆柱的侧面展开图是一个长、宽分别为6和4的长方形,则这个圆柱的体积一定是等于$\frac{36}{π}$
B.命题“?x0∈R,x02+x0-1<0”的否定是“?x∈R,x2+x-1>0”
C.若ω≠0时,“φ=kπ+$\frac{π}{2}$(k∈Z”是“函数f(x)=sin(ωx+φ)是偶函数”的充要条件
D.已知⊙O:x2+y2=r2,定点P(x0,y0),直线l:x0x+y0y=r2,若点P在⊙O内,则直线l与⊙O相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角梯形ABCD中,AB=2,CD=CB=1,∠ABC=90°,平面ABCD外有一点E,平面ADE⊥平面ABCD,AE=ED=1.
(1)求证:AE⊥BE;
(2)求二面角C-BE-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{2-3i}{3+2i}$+z对应的点的坐标为(2,-2),则z在复数平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且a>b>c,$\sqrt{3}$c-2bsinC=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{3}$,c=1,求a和△ABC的面积.

查看答案和解析>>

同步练习册答案