精英家教网 > 高中数学 > 题目详情
18.已知Sn是数列{an}的前n项和,a1=$\frac{3}{2}$且2Sn-Sn-1=n2+3n-1(n≥2),则an=2n-$\frac{1}{{2}^{n}}$.

分析 2Sn-Sn-1=n2+3n-1(n≥2),可得Sn+an=n2+3n-1,n≥2时,Sn-1+an-1=(n-1)2+3(n-1)-1,相减可得:2an-an-1=2(n+1).变形为:an-2n=$\frac{1}{2}$[an-1-2(n-1)].再利用等比数列的通项公式即可得出.

解答 解:∵2Sn-Sn-1=n2+3n-1(n≥2),
∴Sn+an=n2+3n-1,
n≥2时,Sn-1+an-1=(n-1)2+3(n-1)-1,
相减可得:2an-an-1=2(n+1).
变形为:an-2n=$\frac{1}{2}$[an-1-2(n-1)].
∴数列{an-2n}是等比数列,首项为-$\frac{1}{2}$,公比为$\frac{1}{2}$.
∴an-2n=$-\frac{1}{2}×(\frac{1}{2})^{n-1}$,
可得an=2n-$\frac{1}{{2}^{n}}$.
故答案为:2n-$\frac{1}{{2}^{n}}$.

点评 本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.给出下列命题
①函数f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)的图象关于x=π对称的图象的函数解析式为y=sin($\frac{x}{2}$-$\frac{π}{6}$);
②函数f(x)=$\sqrt{x-1}$+$\frac{1}{x}$在定义域上是增函数;
③函数f(x)=|log2x|-($\frac{1}{2}$)x在(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
其中真命题的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=lnx-\frac{x+a}{x}$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:x>0时,$\frac{1}{x+1}<\frac{ln(x+1)}{x}<1$;
(Ⅲ)比较三个数:${(\frac{100}{99})^{100}}$,${(\frac{101}{100})^{100}}$,e的大小(e为自然对数的底数),请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x+y+$\sqrt{2}$=0相切.A,B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E,F两点.
(1)求椭圆C的方程;
(2)当四边形AEBF面积取最大值时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正项等差数列{an}的前n项和为Sn,S10=40,则a3•a8的最大值为(  )
A.14B.16C.24D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z满足(1-i)z=|1+$\sqrt{3}i}$|(i为虚数单位),则$\overline z$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线x2=4y的焦点为F,过F作斜率为$\frac{{\sqrt{3}}}{3}$的直线l与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是(  )
A.4B.$3\sqrt{3}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数g(x)=ex+3x-a(a∈R,e为自然对数底数),若存在x0∈(-∞,1],使g(g(x0))=x0,则实数a的取值范围为(  )
A.(-∞,$\sqrt{e}$+$\frac{1}{2}$]B.(-∞,e+2]C.(-∞,e+$\frac{1}{2}$]D.(-∞,$\sqrt{e}$+2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x2-2x)lnx+(a-$\frac{1}{2}$)x2+2(1-a)x+a.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当a≥0时,f(x)>0.

查看答案和解析>>

同步练习册答案