精英家教网 > 高中数学 > 题目详情
10.抛物线x2=4y的焦点为F,过F作斜率为$\frac{{\sqrt{3}}}{3}$的直线l与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是(  )
A.4B.$3\sqrt{3}$C.$4\sqrt{3}$D.8

分析 先判断△AHF为等边三角形,求出A的坐标,可求出等边△AHF的边长AH的值,△AHF的面积可求.

解答 解:由抛物线的定义可得AF=AH,∵AF的斜率等于$\frac{\sqrt{3}}{3}$,∴AF的倾斜角等于30°,∵AK⊥l,
∴∠FAK=60°,故△AHF为等边三角形.又焦点F(0,1),AF的方程为 y-1=$\frac{\sqrt{3}}{3}$x,
设A(m,$\frac{{m}^{2}}{4}$),m>0,由AF=AH 得$\frac{{m}^{2}}{4}-1=2$,
∴m=2$\sqrt{3}$,故等边三角形△AHF的边长AH=4,
∴△AKF的面积是 $\frac{1}{2}$×4×4sin60°=4$\sqrt{3}$,
故选:C.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断△AKF为等边三角形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知a,b均为正数,且ab-a-2b=0,则$\frac{a^2}{4}-\frac{2}{a}+{b^2}-\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{2-3i}{3+2i}$+z对应的点的坐标为(2,-2),则z在复数平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知Sn是数列{an}的前n项和,a1=$\frac{3}{2}$且2Sn-Sn-1=n2+3n-1(n≥2),则an=2n-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若-1<sinα+cosα<0,则(  )
A.sinα<0B.cosα<0C.tanα<0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,若{bn}的前n项和为Tn,证明:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且a>b>c,$\sqrt{3}$c-2bsinC=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{3}$,c=1,求a和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=2sin(ωx+φ)(ω>0),x∈[{-\frac{π}{12},\frac{2π}{3}}]$的图象如图所示,若f(x1)=f(x2),且x1≠x2,则f(x1+x2)=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前 n项和记为 Sn,满足${a_1}=5,{a_7}=\frac{8}{3}$,且2an+1=an+an+2,要使得Sn取到最大值,则n=(  )
A.13B.14C.15或16D.16

查看答案和解析>>

同步练习册答案