精英家教网 > 高中数学 > 题目详情
5.若-1<sinα+cosα<0,则(  )
A.sinα<0B.cosα<0C.tanα<0D.cos2α<0

分析 根据条件判断出α在第四象限或第二象限,即可得到tanα<0

解答 解:-1<sinα+cosα<0,
∴-1<$\sqrt{2}$sin(α+$\frac{π}{4}$)<0,
∴2kπ-$\frac{π}{4}$<α+$\frac{π}{4}$<2kπ,2kπ+π<α+$\frac{π}{4}$<2kπ+$\frac{5π}{4}$,k∈Z,
∴2kπ-$\frac{π}{2}$<α<2kπ-$\frac{π}{4}$,2kπ+$\frac{3}{4}$π<α<2kπ+π,k∈Z,
∴α在第四象限或第二象限,
∴tanα<0,
故选:C

点评 本题考查三角函数在各个象限的符号的判断,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设集合$A=\left\{{(x,y)\left|{\left\{\begin{array}{l}x-y-1≤0\\ 3x-y+1≥0,x,y∈R\\ 3x+y-1≤0\end{array}\right.}\right.}\right\}$,则A表示的平面区域的面积是(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-x}+a,x≤0}\\{(x-1)^{3}+1,x>0}\end{array}$,且?x0∈[2,+∞)使得f(-x0)=f(x0),若对任意的x∈R,f(x)>b恒成立,则实数b的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(-∞,a)D.(-∞,a]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正项等差数列{an}的前n项和为Sn,S10=40,则a3•a8的最大值为(  )
A.14B.16C.24D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四边形ABEF是正方形.将正方形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M为AF1的中点,如图2.

(I)求证:AC⊥BM;
(Ⅱ)求平面CE1M与平面ABE1F1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线x2=4y的焦点为F,过F作斜率为$\frac{{\sqrt{3}}}{3}$的直线l与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是(  )
A.4B.$3\sqrt{3}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(ax-1)lnx+$\frac{x^2}{2}$.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线l的方程;
(Ⅱ)设函数g(x)=f'(x)有两个极值点x1,x2,其中x1∈(0,e),求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中既是偶函数,又在区间(0,1)上单调递增的是(  )
A.y=cosxB.$y={x^{\frac{1}{2}}}$C.y=2|x|D.y=|lgx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$({\frac{π}{8},0})$是函数f(x)=sinωx+cosωx图象的一个对称中心,则ω的取值可以是(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案