精英家教网 > 高中数学 > 题目详情
13.已知正项等差数列{an}的前n项和为Sn,S10=40,则a3•a8的最大值为(  )
A.14B.16C.24D.40

分析 由等差数列通项公式、前n项和公式求出a3+a8=8,由此利用基本不等式能求出a3•a8的最大值.

解答 解:∵正项等差数列{an}的前n项和为Sn,S10=40,
∴S10=$\frac{10}{2}({a}_{1}+{a}_{10})$=5(a3+a8)=40,
∴a3+a8=8,
∴a3•a8≤($\frac{{a}_{3}+{a}_{8}}{2}$)2=16.
当且仅当a3=a8时,a3•a8取最大值16.
故选:B.

点评 本题考查等差数列中两项积的最大值的求法,考查等差数列的通项公式、前n项和公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知复数z=1+i,其中i为虚数单位,则复数1+z+z2+…+z2017的实部为(  )
A.1B.-1C.21009D.-21009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角梯形ABCD中,AB=2,CD=CB=1,∠ABC=90°,平面ABCD外有一点E,平面ADE⊥平面ABCD,AE=ED=1.
(1)求证:AE⊥BE;
(2)求二面角C-BE-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{2-3i}{3+2i}$+z对应的点的坐标为(2,-2),则z在复数平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,若这200名学生中每周的自习时间不超过m小时的人数为164,则m的值约为(  )
A.26.25B.26.5C.26.75D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知Sn是数列{an}的前n项和,a1=$\frac{3}{2}$且2Sn-Sn-1=n2+3n-1(n≥2),则an=2n-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若-1<sinα+cosα<0,则(  )
A.sinα<0B.cosα<0C.tanα<0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且a>b>c,$\sqrt{3}$c-2bsinC=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{3}$,c=1,求a和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(x+2),}&{x≥2}\\{{2}^{1-x},}&{x<2}\end{array}\right.$(a>0且a≠1),若f(6)+f(-1)=7,函数y=f(x)-b仅有一个零点,则实数b的取值范围为(  )
A.[$\frac{1}{2}$,2]B.($\frac{1}{2}$,2]C.[$\frac{1}{2}$,2)D.($\frac{1}{2}$,2)

查看答案和解析>>

同步练习册答案