精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=loga(4-ax)在[0,2]上是单调递减函数,则实数a的取值范围为(  )
A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)

分析 由题意可得可得a>1,且 4-a×2>0,由此求得实数a的取值范围.

解答 解:由题意可得,a>0,且a≠1,故函数t=4-ax在区间[0,2]上单调递减.
再根据y=loga(4-ax)在区间[0,2]上单调递减,可得a>1,且 4-a×2>0,
解得1<a<2,
故选C.

点评 本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若命题p:“?x∈(-∞,0),x2≥0”,则¬p为?x0∈(-∞,0),x02<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2sinxsin($\frac{π}{2}$-x)-2$\sqrt{3}$cos2x+$\sqrt{3}$在[0,$\frac{π}{2}$]上的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U={x∈N|x≤4},A={0,1,3},B={1,3,4},则∁U(A∩B)=(  )
A.{2}B.{4}C.{2,4}D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+2y=4xy,则x+$\frac{y}{2}$的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的奇函数,当x>0时,f(x)=ex+x2,则不等式f(3-x2)>f(2x)的解集为(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(tanx)=sinxcosx,则f(2)的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ln(e2x+1)-mx为偶函数,其中e为自然对数的底数,则m=1,若a2+ab+4b2≤m,则ab的取值范围是[-$\frac{1}{3}$,$\frac{1}{5}$].

查看答案和解析>>

同步练习册答案