| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点A时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{x=0}\\{x+y-1=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
即A(0,1),此时z=0+2=2,
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>a>b | B. | a>c>b | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com