【题目】新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动.开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.
分组 | 频数 | 频率 |
5 | 0.10 | |
8 | 0.16 | |
x | 0.14 | |
12 | y | |
10 | 0.20 | |
z | ||
合计 | 50 | 1 |
(1)求该校学生总数;
(2)求频率分布表中实数x,y,z的值;
(3)已知日睡眠时间在区间[6,6.5)的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,则选中的2人恰好为一男一女的概率.
【答案】(1)1800人;(2)7,0.24,8;(3).
【解析】
(1)根据高一年级学生抽样比列出方程求解;(2)根据频率、频数与总数的关系计算;(3)列举出5名高二学生中任选2人的所有可能结果,再确定2人中恰好为一男一女的可能,利用古典概型概率公式进行求解.
(1)设该校学生总数为n,
由题意,解得n=1800,
所以该校学生总数为1800人.
(2)由题意,解得x=7,,
.
(3)记“选中的2人恰好为一男一女”为事件A,
记5名高二学生中女生为F1,F2,男生为M1,M2,M3,
从中任选2人有以下情况:(F1,F2),(F1,M1),(F1,M2),(F1,M3),(F2,M1),(F2,M2),(F2,M3),(M1,M2),(M1,M3),(M2,M3),
基本事件共有10个,它们是等可能的,
事件A包含的基本事件有6个,故P(A)==,
所以选中的2人恰好为一男一女的概率为.
科目:高中数学 来源: 题型:
【题目】已知圆和点.
(1)过点向圆引切线,求切线的方程;
(2)求以点为圆心,且被直线截得的弦长为8的圆的方程;
(3)设为(2)中圆上任意一点,过点向圆引切线,切点为,试探究:平面内是否存在一定点,使得为定值?若存在,请求出定点的坐标,并指出相应的定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点.
(1)求异面直线DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点A(0,﹣2),B(4,0),圆C经过点(0,﹣1),(0,1)及(,0).斜率为k的直线l经过点B.
(1)求圆C的标准方程;
(2)当k=2时,过直线l上的一点P向圆C引一条切线,切点为Q,且满足PQ=,求点P的坐标;
(3)设M,N是圆C上任意两个不同的点,若以MN为直径的圆与直线l都没有公共点,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校书法兴趣组有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加书法比赛每人被选到的可能性相同.
用表中字母列举出所有可能的结果;
设M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直角坐标系的原点和极坐标系的极点重合,轴非负半轴与极轴重合, 单位长度相同, 在直角坐标系下, 曲线的参数方程为,为参数) .
(1) 写出曲线的极坐标方程;
(2) 直线的极坐标方程为,求曲线与直线在平面直角坐标系中的交点坐标 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com