精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧面与底面垂直, 为正三角形, ,点分别为线段的中点, 分别为线段上一点,且 .

(1)当时,求证: 平面

(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.

【答案】(1)见解析(2)存在点,且.

【解析】试题分析:

(1)由题意结合几何关系可证得平面,然后利用面面平行的性质即可证得.

(2)建立空间直角坐标系,结合题意可得存在点,且.

试题解析:

(Ⅰ)在线段上取一点,使得

,∴

中点,∴

,∴,又易知

.

,∴平面

,∴.

(Ⅱ)取中点,连接,因为为正三角形,所以

又侧面底面,所以底面

如图所示,以轴, 的中垂线为轴, 轴,建立空间直角坐标系,则 ,设,则

设平面的的一个法向量为

,求得一个法向量

又易得平面的一个法向量为

所以

解得,故存在点,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.

(1)求这批产品通过检验的概率;

(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙同学参加学校“一站到底”闯关活动,活动规则:①依次闯关过程中,若闯关成功则继续答题;若没通关则被淘汰;②每人最多闯3关;③闯第一关得10分,闯第二关得20分,闯第三关得30分,一关都没过则没有得分.已知甲每次闯关成功的概率为,乙每次闯关成功的概率为. 

(Ⅰ)设乙的得分总数为,求得分布列和数学期望;

(Ⅱ)求甲恰好比乙多30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在两个正实数,使得等式成立(其中为自然对数的底数),则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经国务院批复同意,重庆成功入围国家中心城市,某校学生社团针对“重庆的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图所示茎叶图:

(Ⅰ)计算女生打分的平均分,并用茎叶图的数字特征评价男生、女生打分谁更分散;

(Ⅱ)如图按照打分区间绘制的直方图中,求最高矩形的高

(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间和极值;

(2)是否存在实数,使得函数上的最小值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司对10 000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9],其频率分布直方图如图所示.

(1)直方图中的a=_____;

(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_______.

查看答案和解析>>

同步练习册答案