精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

【答案】(1) ;(2)当时,方程无解;当时,方程有唯一解;当时,方程有两解.

【解析】试题分析:求出导函数利用在处的切线方程为,列出方程组求解;(通过 ,判断方程的解出函数的导数判断函数的单调性求出极小值分析出当 时,方程无解;当方程有唯一解;当方程有两解.

试题解析:(Ⅰ)因为,又处得切线方程为

所以,解得.

(Ⅱ)当时, 在定义域内恒大于0,此时方程无解.

时, 在区间内恒成立,

所以为定义域为增函数,因为

所以方程有唯一解.

时, .

时, 在区间内为减函数,

时, 在区间内为增函数,

所以当时,取得最小值.

时, ,无方程解;

时, ,方程有唯一解.

时,

因为,且,所以方程在区间内有唯一解,

时,设,所以在区间内为增函数,

,所以,即,故.

因为,所以.

所以方程在区间内有唯一解,所以方程在区间内有两解,

综上所述,当时,方程无解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小张同学计划在期末考试结束后,和其他小伙伴一块儿外出旅游,增长见识.旅行社为他们提供了省内的都江堰、峨眉山、九寨沟和省外的丽江古城,黄果树瀑布和凤凰古城这六个景点,由于时间和距离等原因,只能从中任取4个景点进行参观,其中黄果树瀑布不能第一个参观,且最后参观的是省内景点,则不同的旅游顺序有( )

A. 54种 B. 72种 C. 120种 D. 144种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌汽车的店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.

付款方式

分3期

分6期

分9期

分12期

频数

20

20

(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件:“至多有1位采用分6期付款“的概率

(2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在 上的函数 若同时满足:①存在 ,使得对任意的 ,都有 的图象存在对称中心.则称 函数.已知函数 ,则以下结论一定正确的是

A. 都是 函数 B. 函数, 不是 函数

C. 不是 函数, 函数 D. 都不是 函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线在点处得切线方程与直线垂直,求的值;

(Ⅱ)若上为单调递减函数,求的取值范围;

(Ⅲ)设,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与轴交点的横坐标为.

(1)求

(2)证明:当时,曲线与直线只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面与底面垂直, 为正三角形, ,点分别为线段的中点, 分别为线段上一点,且 .

(1)当时,求证: 平面

(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.

(1)完成下列 列联表:

喜欢旅游

不喜欢旅游

估计

女性

男性

合计

(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.

附:

参考公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】班主任为了对本班学生的考试成绩进行分析,决定从全班位女同学, 位男同学中随机

抽取一个容量为的样本进行分析.

(Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少;

(Ⅱ)随机抽取位同学,数学成绩由低到高依次为: ;物理成绩由低到高依次为: ,若规定分(含分)以上为优秀,记为这位同学中数学和物理分数均为优秀的人数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案