精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$(x,1),且$\overrightarrow{a}∥\overrightarrow{b}$,则|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$.

分析 利用向量共线的坐标表示列式求得x值,然后利用向量模的公式求模.

解答 解:∵$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$(x,1),且$\overrightarrow{a}∥\overrightarrow{b}$,
∴1×1-2x=0,即x=$\frac{1}{2}$.
∴$\overrightarrow{b}=(\frac{1}{2},1)$,
则|$\overrightarrow{b}$|=$\sqrt{(\frac{1}{2})^{2}+{1}^{2}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.

点评 平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$?a1a2+b1b2=0,$\overrightarrow{a}$∥$\overrightarrow{b}$?a1b2-a2b1=0,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知数列{an}为等差数列,且a1+a3=10,a7+a9=20,则a5=$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正方体ABCD-A1B1C1D1中.
(1)求BC1与平面ABCD所成角的大小;
(2)求证:BC1⊥B1D;
(3)求证:B1D⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若y=$\frac{ax+b}{{x}^{2}+1}$的值域[-1,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=2(log2x)2+2alog2$\frac{1}{x}$+b,已知x=$\frac{1}{2}$时,f(x)有最小值-8,
(1)求a与b的值;
(2)求满足f(x)>0的x的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在长方体ABCD-A1B1C1D1中,求证:面AA1D1D∥面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=acos2x-bsinxcosx-$\frac{a}{2}$的最大值是$\frac{1}{2}$,且f($\frac{π}{3}$)=$\frac{\sqrt{3}}{4}$,则f(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{4}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于定义在R上的函数f(x),有下述四个命题;
①若y=f(x)是奇函数,则y=f(x-1)的图象关于点A(1,0)对称;
②若函数y=f(x+1)与y=f(1-x)的图象关于直线x=1对称;
③如果函数y=f(x)满足f(x+1)=f(1-x),f(x+3)=f(3-x),那么该函数以4为周期.
其中正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的图象如图所示,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{12}$

查看答案和解析>>

同步练习册答案