| A. | 252 | B. | -252 | C. | 160 | D. | -160 |
分析 把所给的三项式变为二项式,利用二项式展开式的通项公式,求得展开式中常数项.
解答 解:(x+$\frac{1}{x}$-2)5 的展开式的通项公式为Tr+1=${C}_{5}^{r}$•${(x+\frac{1}{x})}^{5-r}$•(-2)r,0≤r≤5,
对于${(x+\frac{1}{x})}^{5-r}$,它的通项为${C}_{5-r}^{k}$•x5-r-2k,令5-r-2k=0,求得r+2k=5,0≤k≤5-r,
故当r=1,k=2; 或r=3,k=1,或r=5,k=0;可得展开式的常数项,
故展开式中常数项为${C}_{5}^{1}$•(-2)•${C}_{4}^{2}$+${C}_{5}^{3}$•(-8)•${C}_{2}^{1}$+(-2)5=-60-160-32=-252,
故答案为:B.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属基础题.
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 | 4 |
| y | 2.2 | 4.3 | 4.5 | 4.8 | 6.7 |
| A. | 5.76 | B. | 6.8 | C. | 8.3 | D. | 8.46 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 数学成绩xi | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
| 物理成绩yi | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
| $\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
| 76 | 83 | 812 | 526 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若直线a和b共面,直线b和c共面,则a和c共面 | |
| B. | 直线a与平面α不垂直,则a与平面α内所有的直线都不垂直 | |
| C. | 直线a与平面α不平行,则a与平面α内的所有直线都不平行 | |
| D. | 异面直线a、b不垂直,则过a的任何平面与b都不垂直 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com