精英家教网 > 高中数学 > 题目详情
18.复数z=($\frac{i}{1-i}$)2,则复数2+z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简,求出复数2+z在复平面上对应的点的坐标得答案.

解答 解:∵$z={(\frac{i}{1-i})^2}$=$[\frac{i(1+i)}{(1-i)(1+i)}]^{2}$=$(-\frac{1}{2}+\frac{i}{2})^{2}=(-\frac{1}{2})^{2}-\frac{i}{2}+(\frac{i}{2})^{2}=-\frac{i}{2}$,
∴2+z=2-$\frac{i}{2}$,
则复数2+z在复平面上对应的点的坐标为(2,-$\frac{1}{2}$),位于第四象限.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.(x+$\frac{1}{x}$-2)5展开式中常数项为(  )
A.252B.-252C.160D.-160

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a,b为实数,若$\frac{1+2i}{a+bi}$=1+i,则|a+bi|=(  )
A.$\frac{5}{2}$B.2C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,若tanAtanC+tanBtanC=tanAtanB,且sin2A+sin2B=(m2+1)sin2C,则m的值为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求由直线y=6-x与曲线y=2$\sqrt{2x}$及x轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\sqrt{3}$sinx•cosx+cos2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在锐角△ABC的三个角A,B,C所对的边分别为a,b,c,且f(C)=1,求$\frac{{{a^2}+{b^2}+{c^2}}}{ab}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,且满足a1=1,an=$\frac{3}{n+2}$Sn(n∈N),则Sn=$\frac{1}{6}n(n+1)(n+2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于函数f(x),若对于任意的a,b.c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“三角形函数”.已知函数f(x)=$\frac{sinx+m}{sinx+2}$是“三角形函数”,则实数m的取值范围是($\frac{7}{5}$,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=$\frac{x-3}{x+2}$,求f(0),f(a),f[f(x)].

查看答案和解析>>

同步练习册答案