分析 根据“三角形函数”的定义,判断函数的单调性,转化为求f(x)max-f(x)min<f(x)min即可,利用换元法结合分式函数的单调性的性质进行讨论求解即可.
解答 解:f(x)=$\frac{sinx+m}{sinx+2}$=$\frac{sinx+2+m-2}{sinx+2}$=1+$\frac{m-2}{sinx+2}$,
若m=2,则f(x)=1,此时f(x)构成边长为1的等边三角形,满足条件,
设t=sinx,则-1≤t≤1,
则函数f(x)等价为g(t)=1+$\frac{m-2}{t+2}$,
若m-2>0即m>2,此时函数g(t)在-1≤t≤1上是减函数,
则函数的最大值为g(-1)=1+m-2=m-1,最小值为g(1)=1+$\frac{m-2}{3}$=$\frac{m+1}{3}$,
若f(x)=$\frac{sinx+m}{sinx+2}$是“三角形函数”,
则满足g(x)max-g(x)min<g(x)min即可,
即m-1-$\frac{m+1}{3}$<$\frac{m+1}{3}$,
整理得m<5,此时2<m<5,
若m-2<0即m<2,此时函数g(t)在-1≤t≤1上是增函数,
则函数的最小值为g(-1)=1+m-2=m-1,最大值为g(1)=1+$\frac{m-2}{3}$=$\frac{m+1}{3}$,
若f(x)=$\frac{sinx+m}{sinx+2}$是“三角形函数”,
则满足g(x)max-g(x)min<g(x)min即可,
即$\frac{m+1}{3}$-(m-1)<m-1,
整理得m>$\frac{7}{5}$,此时$\frac{7}{5}$<m<2,
综上$\frac{7}{5}$<m<5,
故答案为:($\frac{7}{5}$,5)
点评 本题主要考查函数与方程的应用,根据“三角形函数”的定义,转化为求f(x)max-f(x)min<f(x)min,是解决本题的关键.综合性较强,难度较大.
科目:高中数学 来源: 题型:选择题
| A. | 若直线a和b共面,直线b和c共面,则a和c共面 | |
| B. | 直线a与平面α不垂直,则a与平面α内所有的直线都不垂直 | |
| C. | 直线a与平面α不平行,则a与平面α内的所有直线都不平行 | |
| D. | 异面直线a、b不垂直,则过a的任何平面与b都不垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{16}$个单位 | B. | 向右平移$\frac{π}{16}$个单位 | ||
| C. | 向左平移$\frac{π}{4}$个单位 | D. | 向右平移$\frac{π}{4}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-2\sqrt{7}$ | B. | $\sqrt{7}$ | C. | $±2\sqrt{7}$ | D. | $±\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 311 | B. | 272 | C. | 144 | D. | 80 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com