精英家教网 > 高中数学 > 题目详情
8.设f(x)=$\frac{x-3}{x+2}$,求f(0),f(a),f[f(x)].

分析 分别将x=0,x=a,x=f(x)代入表达式即可.

解答 解:∵f(x)=$\frac{x-3}{x+2}$,
∴f(0)=-$\frac{3}{2}$,
f(a)=$\frac{a-3}{a+2}$(a≠-2),
f[f(x)]=$\frac{\frac{x-3}{x+2}-3}{\frac{x-3}{x+2}+2}$=-$\frac{2x+9}{3x+1}$(x≠-2且x≠-$\frac{1}{3}$).

点评 本题考查了求函数值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数z=($\frac{i}{1-i}$)2,则复数2+z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.展开$(\frac{1}{x}-1)^{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若${(\frac{x}{a}+\frac{1}{{\root{3}{x}}})^8}$的展开式中常数项为1,则实数a=(  )
A.$-2\sqrt{7}$B.$\sqrt{7}$C.$±2\sqrt{7}$D.$±\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sinωx-cosωx,ω>0是常数,x∈R,且图象上相邻两个最高点的距离为π,则下列说法正确的是(  )
A.ω=1B.曲线y=f(x)关于点(π,0)对称
C.曲线y=f(x)与直线$x=\frac{π}{2}$对称D.函数f(x)在区间$(0,\frac{π}{3})$单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=-2cosx-3,当x的取值集合为{x|x=2kπ+π,k∈Z}时,y取得最大值;当x的取值集合为{x|x=2kπ,k∈Z}时,y取得最小值-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若sinx+cosx=$\sqrt{2}$,则tanx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}中,a2=2,又a2,a3+1,a4成等差数列,数列{bn}的前n项和为Sn,且$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,则a8+b8=(  )
A.311B.272C.144D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆锥曲线$\frac{x^2}{m}$+y2=1的离心率为$\sqrt{7}$,则m=(  )
A.$\frac{1}{6}$B.6C.-$\frac{1}{6}$D.-6

查看答案和解析>>

同步练习册答案