精英家教网 > 高中数学 > 题目详情
20.若sinx+cosx=$\sqrt{2}$,则tanx=1.

分析 将已知等式两边平方可得2sinxcosx=1,化为$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=1,利用同角三角函数基本关系式可得:$\frac{2tanx}{ta{n}^{2}x+1}$=1,整理即可解得tanx的值.

解答 解:∵sinx+cosx=$\sqrt{2}$,
∴两边平方可得:1+2sinxcosx=2,解得:2sinxcosx=1,
∴$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=1,可得:$\frac{2tanx}{ta{n}^{2}x+1}$=1,整理可得:tan2x-2tanx+1=0,
∴解得:tanx=1.
故答案为:1.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,且满足a1=1,an=$\frac{3}{n+2}$Sn(n∈N),则Sn=$\frac{1}{6}n(n+1)(n+2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线y=x+1与曲线y=f(x)=ln(x+a)相切,则${∫}_{1}^{2}$f′(x-2)dx=(  )
A.1B.ln2C.2ln2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=$\frac{x-3}{x+2}$,求f(0),f(a),f[f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.
(I)求f(x)的解析式,并求函数f(x)在[-$\frac{π}{12}$,$\frac{π}{4}$]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义:若一个正整数表示为两个连续偶数的平方差,那么这个正整数称为“神秘数”,例如12=42-22,12就是“神秘数”.(1)设“神秘数”构成数列{an},求数列{an}的通项公式;
(2)在区间[1,200]内求所有“神秘数”之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,一渡船自岸边A处出发,与岸边成70°方向以30kmh的速度航行,由于河水流速的影响,它实际航行的方向与河岸成120°,试求水流速度(水流方向与河岸平行,精确到0.1km/h

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC中,内角A,B,C的对边分别为a,b,c.
(1)若$\frac{a}{cosA}$=$\frac{b}{cosB}$,且sin2A(2-cosC)=cos2B+$\frac{1}{2}$,求角C的大小;
(2)若△ABC为锐角三角形,且A=$\frac{π}{4}$,a=2,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,经过原点的直线l交椭圆C于P、Q两点,若|PQ|=a,AP⊥PQ,则椭圆C的离心率为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案