精英家教网 > 高中数学 > 题目详情
16.已知直线y=x+2交椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)于A、B两点.
(I)求椭圆C的离心率的取值范围;
(Ⅱ)设M为C上区别于A、B的任意一点,且$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(O为坐标原点),λ22=1,求a的值.

分析 (Ⅰ)将直线方程代入椭圆方程,利用判别式大于0,可得a的范围,再由离心率公式,计算即可得到所求范围;
(Ⅱ)运用向量的坐标运算,确定坐标之间的关系,利用M,A,B在椭圆上,结合韦达定理,化简整理,可得a的方程,解方程可得a的值.

解答 解:(Ⅰ)将直线y=x+2代入椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,可得
(1+a2)x2+4a2x+3a2=0,
由△=16a4-4(1+a2)(3a2)>0,
可得a>$\sqrt{3}$或a<-$\sqrt{3}$(舍去),
即有e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-1}}{a}$=$\sqrt{1-\frac{1}{{a}^{2}}}$∈($\frac{\sqrt{6}}{3}$,1);
(Ⅱ)设M(x,y),A(x1,y1),B(x2,y2),
由$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,可得
x=λx1+μx2,y=λy1+μy2
又因为点M在椭圆C上,所以有(λx1+μx22+a2(λy1+μy22=a2
整理可得:λ2(x12+a2y12)+μ2(x22+a2y22)+2λμ(x1x2+a2y1y2)=a2
即为(λ22)a2+2λμ(x1x2+a2y1y2)=a2
由λ22=1,可得x1x2+a2y1y2=0,
又x1+x2=-$\frac{4{a}^{2}}{1+{a}^{2}}$,x1x2=$\frac{3{a}^{2}}{1+{a}^{2}}$,
可得x1x2+a2y1y2=x1x2+a2(x1+2)(x2+2)=0,
即有(1+a2)x1x2+2a2(x1+x2)+4a2=0,
可得(1+a2)•$\frac{3{a}^{2}}{1+{a}^{2}}$+2a2(-$\frac{4{a}^{2}}{1+{a}^{2}}$)+4a2=0,
解得a=$\sqrt{7}$.

点评 本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.甲、乙两个乒乓球选手进行比赛,他们的水平相当,规定“七局四胜”,即先赢四局者胜,若已知甲先赢了前两局,求:
(1)乙取胜的概率;
(2)比赛打满七局的概率;
(3)设比赛局数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果函数f(x)=$\frac{1}{2}$(m-2)x2+(n-8)x+1(m≥0,n≥0)在区间[1,2]上单调递减,则3m+2n的最大值为22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,椭圆C过点G($\sqrt{2}$,$\frac{\sqrt{3}}{3}$),B为椭圆C的上顶点,过点B的两条直线与椭圆C分别交于M,N两点,且直线BM与BN的斜率的积为$\frac{2}{3}$.
(1)求椭圆C的标准方程;
(2)椭圆C上存在点P使得OP∥MN(O为坐标原点),求△MNP面积的最大值,并求此时直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(n)=(1+$\frac{1}{n}$)(1+$\frac{1}{n+1}$)…(1+$\frac{1}{n+n}$)用数学归纳法证明f(n)≥3,在假设n=k时成立后,f(k+1)与f(k)的关系是f(k+1)=f(k)•$\frac{(1+\frac{1}{2k+1})(1+\frac{1}{2k+2})}{1+\frac{1}{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了了解某天甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,
测量产品中的微量元素x,y的含量(单位:微克),当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.已知该天甲厂生产的产品共有98件,如表是乙厂的5件产品的测量数据:
编号 1 2 3 4 5
 x 169 178 166 175 180
 y 75 80 77 7081
(1)求乙厂该天生产的产品数量;
(2)用上述样本数据统计乙厂该天生产的优等品的数量;
(3)从乙厂抽取的上述5件产品中,随机抽取2件.求抽取的2件产品中优等品的件数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.(x+$\frac{1}{x}$-2)5展开式中常数项为(  )
A.252B.-252C.160D.-160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.A,B两地之间隔着一个水塘(如图),现选择另一点C,测得CA=10$\sqrt{7}$km,CB=10km,∠CBA=60°.
(1)求A,B两地之间的距离;
(2)若点C在移动过程中,始终保持∠ACB=60°不变,问当∠CAB何值时,△ABC的面积最大?并求出面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,若tanAtanC+tanBtanC=tanAtanB,且sin2A+sin2B=(m2+1)sin2C,则m的值为±2.

查看答案和解析>>

同步练习册答案