精英家教网 > 高中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,E为AB上一点,以BE为直径作圆O与AC相切于点D.若AB:BC=2:1,CD=
3
,则圆O的半径长为
 
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:连接DE,由直径所对的圆周角为直角可得∠BDE=∠C=90°,又AC切圆O于点D,根据弦切角定理可得∠BED=∠BDC,又由AB:BC=2:1,∴∠A=30°,从而∠ABC=60°,于是∠EBD=∠CBD=
1
2
∠ABC
=30°,而CD=
3
,可得BD,进而在Rt△BED中即可得出.
解答: 解:连接DE,则∠BDE=∠C=90°,
由AB:BC=2:1,∴∠A=30°,从而∠ABC=60°,
又∵AC切圆O于点D,故∠BED=∠BDC,
从而:∠EBD=∠CBD=
1
2
∠ABC
=30°,
而CD=
3

∴BD=2CD=2
3

∴BE=
BD
cos30°
=4.
故圆O的半径:r=
1
2
BE=2.
故答案为:2
点评:熟练掌握圆的性质、弦切角定理、含30°角的直角三角形的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个函数中,既是(0,
π
2
)上的增函数,又是以π为周期的偶函数的是(  )
A、y=tanx
B、y=|sinx|
C、y=cosx
D、y=|cosx|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-log
1
2
x实数a,b,c满足a<b<c,且满足f(a)•f(b)•f(c)<0,若实数x0是函数y=f(x)的一个零点,则下列结论一定成立的是(  )
A、x0>c
B、x0<c
C、x0>a
D、x0<a

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C所对的边分别是a,b,c,若
a-c
b-c
=
sinB
sinA+sinC

(1)求角A;
(2)若f(x)=sin2(x+A)-cos2(x+A),求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2+4
,且x=2是函数f(x)的一个极小值点.
(Ⅰ)求实数a的值;
(Ⅱ)求f(x)在区间[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次试验中,有两个试验数据x,y统计的结果如下面的表格1.
x 1 2 3 4 5
y 2 3 4 4 5
参考数据:
序号 x y x2 xy
1 1 2 1 2
2 2 3 4 6
3 3 4 9 12
4 4 4 16 16
5 5 5 25 25
表格2
(1)在给出的坐标系中画出x,y的散点图.
(2)补全表格2,然后根据表格2的内容和公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

①求出y对x的回归直线方程
y
=
b
x+
a
中回归系数
a
b

②估计当x为10时
y
的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)设bn=an-2n+1,证明:数列{bn}是等比数列;
(Ⅱ)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(Ⅲ)若1<r<s且r,s∈N*,求证:使得a1,ar,as成等差数列的点列(r,s)在某一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,公差为d.已知S2,S3+1,S4成等差数列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比数列,求
an-2
Sn
(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某基金管理公司管理着一只开放式基金,用xn表示该基金在第n年初的总资产,该基金相对于年初的总资产来说,年投资收益率为a,在第n年内,该基金持有人赎回该基金的资金与xn成正比,投资者购买该基金的资金与xn成反比,比例系数依次为正常数b、c(赎回后该基金的资产相应减少,购买后该基金的资产相应增加).该基金每年向管理公司交纳管理费,向基金持有人分红的红利和其他开支合计为正常数d.
(1)求xn+1和xn的关系式;
(2)若x1取一个恰当的值时可使该基金每年年初的总资产保持不变,试写出a、b、c、d应满足的关系.

查看答案和解析>>

同步练习册答案