精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x2-2x+a在[2,3]上的最大值与最小值之和为5,则实数a的值为(  )
A.1B.2C.3D.4

分析 根据f(x)开口朝上,对称轴为 x=1,f(x)在[2,3]是单调递增函数,求出函数的最大值与最小值.

解答 解:由题意知,f(x) 开口朝上,对称轴为 x=1在区间[2,3]左侧,f(x)在[2,3]是单调递增函数;
∴f(x)在x=2处取得最小值 f(2)=a,在x=3处取得最大值f(3)=3+a;
∴a+3+a=5⇒a=1.
故选:A.

点评 本题主要考查了一元二次函数的基本性质与图纸基本特征,属简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.经过平面外两点可作与该平面平行的平面个数为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-ax,(a∈R,x>0).
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.则输出的x(x<6)的概率为$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某种新药服用x小时后血液中残留为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为(  )
A.上午10:00B.中午12:00C.下午4:00D.下午6:00

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\left\{\begin{array}{l}{-x-1(x<-1)}\\{-{x}^{2}+1(-1≤x≤1)}\\{x-1(x>1)}\end{array}\right.$.
(1)求f(2),f(-2).
(2)若f(a)=1,求实数a的值.
(3)判断函数f(x)的奇偶性(只写出结果,不需证明)
(4)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.几何体ABCDEF如图所示,其中AC⊥AB,AC=3,AB=4,AE、CD、BF均垂直于面ABC,且AE=CD=5,BF=3,则这个几何体的体积为26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.“x<0”是“ln(x+1)<0”的充要条件
B.“?x≥2,x2-3x+2≥0”的否定是“?x<2,x2-3x+2<0”
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60
D.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程是$\widehat{y}$=1.23x+0.08

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′:AA′=2:3,则S△A′B′C′:S△ABC=(  )
A.2:3B.2:5C.4:9D.4:25

查看答案和解析>>

同步练习册答案