精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.若x1,x2满足|x1+x2|=|x1x2|-2求k的值.
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:利用二次方程的根与系数的关系解答.
解答: 解:∵关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2
∴△=[-2(k-1)]2-4k2=-8k+4≥0,
∴k
1
2

又由韦达定理可得,
|x1+x2|=|2(k-1)|=2-2k,
|x1x2|=k2
又∵|x1+x2|=|x1x2|-2,
∴2-2k=k2-2,
∴k2+2k-4=0,
解得,k=-
5
-1.
点评:本题考查了二次方程的根与系数的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}中,前n项Sn=
1
2
n2+
a3
2
n,则a3的值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R).
(1)设g(x)=
ln|x|
|x|
,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+
1
2

(2)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的长轴为AB,点(0,1)恰好是椭圆的一个顶点,且椭圆的离心率e=
3
2

过点B的直线l与x轴垂直.
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,
延长HP到点Q使得HP=PQ,连结AQ延长交直线l于点M,N为MB的中点.
①求点Q的轨迹;
②判断直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

2名女生、3名男生排成一排合影留念,针对下列站法,试问:各有多少种不同的站法?
(1)2名女生相邻;
(2)2名女生不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
x2
ex
的极小值和极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a2=1,前n项和为Sn,且Sn=
n(an-a1)
2

(1)求a1
(2)证明数列{an}为等差数列,并写出其通项公式;
(3)设lgbn=
an+1
3n
,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:
(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;
(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一艘轮船按照北偏西50°的方向,以15海里每小时的速度航行,一个灯塔M原来在轮船的北偏东10°方向上,经过40分钟,轮船与灯塔的距离是5
3
海里,则灯塔和轮船原来的距离为多少?

查看答案和解析>>

同步练习册答案