已知函数
(1)如果函数的单调减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图像过点的切线方程;
(3)证明:对任意的,不等式恒成立,求实数的取值范围。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数,,记。
(Ⅰ)判断的奇偶性,并证明;
(Ⅱ)对任意,都存在,使得,.若,求实数的值;
(Ⅲ)若对于一切恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间上的值域为.
⑴已知幂函数的图像经过点,判断是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.
(1)写出的单调递减区间(不必证明);(4分)
(2)设点的横坐标,求点的坐标(用的代数式表示);(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com