【题目】如图,矩形和菱形所在的平面相互垂直,,为的中点.
(Ⅰ)求证:平面;
(Ⅱ) 求,,求二面角的余弦值.
【答案】(Ⅰ)详见解析(Ⅱ)
【解析】
(Ⅰ)由矩形和菱形所在的平面相互垂直,,进而证得平面,证得,再根菱形ABEF的性质,证得,利用线面垂直的判定定理,即可证得平面.
(Ⅱ) 由(Ⅰ)可知,,两两垂直,以为原点,为轴,为轴,为轴,建立空间直角坐标系,分别求得平面ACD和平面ACG一个法向量,利用向量的夹角公式,即可求解.
(Ⅰ)证明:∵矩形和菱形所在的平面相互垂直,,
∵矩形菱形,∴平面,
∵AG平面,∴,
∵菱形中,,为的中点,∴,∴,
∵,∴平面.
(Ⅱ) 由(Ⅰ)可知,,两两垂直,以为原点,为轴,为轴,为轴,
建立空间直角坐标系,
∵,,则,,
故,,,,
则,,,
设平面的法向量,则,
取,得,
设平面的法向量,则,
取,得,
设二面角的平面角为,则,
由图可知为钝角,所以二面角的余弦值为 .
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆: 的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的
坐标;若不存在说明理由;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在R上的增函数,则下列结论一定正确的是( )
A.f(x)+f(-x)是偶函数且是增函数
B.f(x)+f(-x)是偶函数且是减函数
C.f(x)-f(-x)是奇函数且是增函数
D.f(x)-f(-x)是奇函数且是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程是(为参数)以原点为极点, 轴正半轴为极轴,并取与直角坐标系相同的单位长度,建立极坐标系,曲线的极坐标方程是.
(1)求曲线, 的直角坐标方程;
(2)若、分别是曲线和上的任意点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列的前项和为,数列的前项和为,下列说法错误的是( )
A. 若有最大值,则也有最大值
B. 若有最大值,则也有最大值
C. 若数列不单调,则数列也不单调
D. 若数列不单调,则数列也不单调
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com