精英家教网 > 高中数学 > 题目详情
6.已知拋物线的焦点是F,准线是l,M是拋物线上一点,则经过点F、M且与l相切的圆的个数可能是(  )
A.0,1B.1,2C.2,4D.0,1,2,4

分析 圆心在FM的中垂线,经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,圆心在抛物线上,直线与抛物线交于两点,得到有两个圆.

解答 解:①当抛物线方程为y2=2px,
当M坐标为($\frac{p}{2}$,p)或($\frac{p}{2}$,-p)时,过F、M且与l相切的圆只有一个,
②当M坐标不为($\frac{p}{2}$,p)或($\frac{p}{2}$,-p)时,连接FM,作出它的中垂线,则要求的圆心就在中垂线上,
经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,
∴圆心在抛物线上,
∵直线与抛物线交于两点,
∴这两点可以作为圆心,这样的圆有两个,
故答案选:B.

点评 本题考查抛物线的简单性质,本题解题的关键是看出圆心的特点,看出圆心必须在抛物线上,而直线与抛物线有两个交点,即有两个点可以作为圆心,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=2px(p>0)的焦点为F,过F的直线l与抛物线交于A,B两点,A,B在抛物线准线上的射影分别为A1,B1,点M是A1B1的中点,若|AF|=m,|BF|=n,则|MF|=(  )
A.m+nB.$\frac{m+n}{2}$C.$\sqrt{mn}$D.mn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有4个不同的小球,4个不同的盒子,现需把球全部放进盒子里,
(1)没有空盒子的方法共有多少种?
(2)可以有空盒子的方法共有多少种?
(3)恰有1个盒子不放球,共有多少种方法?(最后结果用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若sinα、cosα是方程x2+px+p=0两根,则p的值为1-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线2x2=-y的焦点坐标是(  )
A.(-1,0)B.(0-1)C.(-$\frac{1}{8}$,0)D.(0,-$\frac{1}{8}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,若h(x)=$\frac{f(x)+2}{g(x)}$,则h′(5)=$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有$\frac{S_n}{T_n}$=$\frac{2n-3}{4n-3}$,则$\frac{a_6}{b_6}$的值为(  )
A.$\frac{19}{41}$B.$\frac{3}{7}$C.$\frac{7}{15}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在正方体ABCD-A′B′C′D′中,点P为线段AD′的中点,则异面直线CP与BA′所成角θ的值为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案