精英家教网 > 高中数学 > 题目详情

某化工企业2010年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.
(Ⅰ)求该企业使用该设备x年的年平均污水处理费用y(万元);
(Ⅱ)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?

解:(1)………………………4分
);………………………6分
(2)由均值不等式得:
(万元)………………………9分
当且仅当,即时取到等号.………………………11分
答:该企业10年后需要重新更换新设备

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
⑴若的定义域和值域均是,求实数的值;
⑵若上是减函数,且对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当,且时,求证: 
(2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某新型智能在线电池的电量(单位:kwh)随时间(单位:小时)的变化规律是:,其中是智能芯片实时控制的参数。
(1)当时,求经过多少时间电池电量是 kwh;
(2)如果电池的电量始终不低于2 kwh,求参数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(1)计算的值.
(2)计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若定义在上的函数满足条件:存在实数,使得:
⑴ 任取,有是常数);
⑵ 对于内任意,当,总有
我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题:
(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。
(2) 已知是“平顶型”函数,求出 的值。
(3)对于(2)中的函数,若上有两个不相等的根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(15分)已知:二次函数.
(1)求的解析式;
(2)若有一个正的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

同步练习册答案