精英家教网 > 高中数学 > 题目详情
已知α是第四象限角,且f(α)=
sin(π-α)cos(2π-α)
tan(
π
2
-α)sin(-π-α)

(1)若cos(α+
π
2
)=
1
5
,求f(α)的值;
(2)α=-1860°,求f(α)的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:(1)由条件利用诱导公式求得f(α)=sinα,再根据cos(α+
π
2
)=
1
5
,求得f(α)的值.
(2)由题意可得f(α)=sin(-1860°),利用诱导公式花简求得结果.
解答: 解:(1)∵已知α是第四象限角,且f(α)=
sin(π-α)cos(2π-α)
tan(
π
2
-α)sin(-π-α)
=
sinαcosα
cotα[-sin(π+α)]
=
sinαcosα
cosα
sinα
•sinα
=sinα,
∵cos(α+
π
2
)=
1
5
=-sinα,∴f(α)=sinα=-
1
5

(2)∵α=-1860°,∴f(α)=sin(-1860°)=sin(-60°-5×360°)=-sin60°=-
3
2
点评:本题主要考查利用诱导公式进行化简求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M(-3,0),N(3,0),|PM|+|PN|=6,则动点P的轨迹是(  )
A、椭圆B、以M,N为端点的线段
C、一条射线D、双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高一年级期中考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(Ⅲ)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=3,求(sinα+cosα )2的值;
(2)已知0<α<
π
4
,sin(α+
π
4
)=
12
13
,求
sinα
cos(
π
4
-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,E,F分别为BB1,AC的中点.
(1)求证:BF∥平面A1EC;
(2)求证:平面A1EC⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,f(x)=x2-ax,g(x)=ax2+2bx+3,且a≠0.
(1)解关于x的不等式f(x)>6a2
(2)当x∈[1,3]时,不等式f(x)+4>0恒成立,求a的取值范围;
(3)对任意的x∈R,b∈[0,2],不等式g(x)≥x+b恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a(x-1)
x+1

(Ⅰ)若函数f(x)在(0,+∞)上为单调递增函数,求实数a的取值范围;
(Ⅱ)设m>n>0,求证:
lnm-lnn
2
m-n
m+n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
2
).
(Ⅰ)若|
AC
|=|
BC
|,求角α的值;
(Ⅱ)求y=
1
3
(3sinαcosα-
AC
BC
+1)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:DE∥平面PBC;
(2)求证:AB⊥PE.

查看答案和解析>>

同步练习册答案