精英家教网 > 高中数学 > 题目详情
14.在锐角△ABC中,角A、B、C所对应的边分别为a,b,c,若$\sqrt{3}$b=2csinB,则角C等于(  )
A.30°B.45°C.60°D.120°

分析 由已知等式结合正弦定理求得sinC的值,进一步求得C的值.

解答 解:在△ABC中,由$\sqrt{3}$b=2csinB及正弦定理得:$\sqrt{3}$sinB=2sinCsinB,
∵sinB≠0,
∴sinC=$\frac{\sqrt{3}}{2}$,
又△ABC是锐角三角形,
∴C=60°.
故选:C.

点评 本题考查三角形的解法,考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{1}{3}$ax3-x2在[1,2]上是增函数,则a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga($\sqrt{{x}^{2}+m}$+x)(a>0,a≠1)为奇函数.
(1)求实数m的值;
(2)求f(x)的反函数f-1(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于9的概率为(  )
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{2}{9}$D.$\frac{11}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sinθ=$\frac{{2\sqrt{5}}}{5}$,且θ为钝角.
(1)求tanθ;
(2)求$\frac{1}{sin2θ}$+$\frac{2sinθ-cosθ}{sinθ+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知sinα-cosα=-$\frac{1}{5}$,则sin2α的值为(  )
A.$\frac{12}{25}$B.-$\frac{24}{25}$C.$\frac{24}{25}$D.-$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,OAB是一块半径为1,圆心角为$\frac{π}{3}$的扇形空地.现决定在此空地上修建一个矩形的花坛CDEF,其中动点C在扇形的弧$\widehat{AB}$上,记∠COA=θ.
(Ⅰ)写出矩形CDEF的面积S与角θ之间的函数关系式;
(Ⅱ)当角θ取何值时,矩形CDEF的面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设抛物线y=2x2的焦点坐标是(  )
A.(1,0)B.($\frac{1}{2}$,0)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x|ax2-ax+1≤0}=∅,则实数a的取值集合为(  )
A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}

查看答案和解析>>

同步练习册答案