(本小题满分12分) 已知曲线
,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,
设![]()
.。
求数列
的通项公式;
记
,数列
的前
项和为
,试比较
与
的大小
;
记
,数列
的前
项和为
,试证明:
。
科目:高中数学 来源: 题型:解答题
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数
,公比为正整数
的无穷等比数列
的子数列问题. 为此,他任取了其中三项
.
(1) 若
成等比数列,求
之间满足的等量关系;
(2) 他猜想:“在上述数列
中存在一个子数列
是等差数列”,为此,他研究了
与
的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数
,公差为正整数
的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知数列{an}的首项a1=" t" >0,
,n=1,2,……
(1)若t =
,求
是等比数列,并求出{an}的通项公式;
(2)若
对一切
都成立,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设二次函数
,对任意实数
,
恒成立;正数数列
满足
.
(1)求函数
的解析式和值域;
(2)试写出一个区间
,使得当
时,数列
在这个区间上是递增数列,并说明理由;
(3)若已知
,求证:数列
是等比数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com