精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
已知数列{an}的首项a1=" t" >0,,n=1,2,……
(1)若t =,求是等比数列,并求出{an}的通项公式;
(2)若对一切都成立,求t的取值范围.

(1)将所给关系式取导数,即得递推关系式,从而得证,(2)0<t<1

解析试题分析:(1)由题意
所以,又因为,                               ……4分
所以数列{}是首项为,公比为的等比数列,                       ……5分
根据等比数列的通项公式得
所以.                                                         ……7分
(2)由(1)知,                       ……9分
,故由,               ……10分
即(-1)()+1<(-1)()+1得-1>0,
又t>0,则0<t<1.                                                        ……13分
考点:本小题主要考查由数列的递推关系式求数列的通项公式、等比数列的判定和通项公式的求解,以及恒成立问题的解决.
点评:由数列的递推关系式求数列的通项公式有累加法、累乘法和构造新数列法,要根据递推关系式的形式恰当选择.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在数列中,,且.
(Ⅰ) 求,猜想的表达式,并加以证明;
(Ⅱ) 设,求证:对任意的自然数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图象上,其中
(1)证明数列是等比数列;
(2)设,求及数列的通项;
(3)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn=2n2为等比数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知曲线,从上的点轴的垂线,交于点,再从点轴的垂线,交于点
.。
求数列的通项公式;
,数列的前项和为,试比较的大小
,数列的前项和为,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列满足.
⑴求证:数列是等比数列,并写出数列的通项公式;
⑵若数列满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知数列的前n项和为,且
(Ⅰ)求数列通项公式;
(Ⅱ)若,求证数列是等比数列,并求数
的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列满足:,其中为实数,为正整数.
(1)对任意实数,证明数列不是等比数列;
(2)试判断数列是否为等比数列,并证明你的结论;
(3)设,为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

___________.

查看答案和解析>>

同步练习册答案