精英家教网 > 高中数学 > 题目详情
10.函数f(x)=ln(x+1)+e-x的单调递增区间为(  )
A.(-1,+∞)B.(0,+∞)C.(e,+∞)D.($\frac{1}{e}$,+∞)

分析 求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可.

解答 解:函数定义域为(-1,+∞),
f′(x)=$\frac{{e}^{x}-(x+1)}{(x+1{)e}^{x}}$,令m(x)=ex-(x+1),(x>-1),
则m′(x)=ex-1,由m′(x)=0,得x=0,
则x∈(-1,0)时,m′(x)<0;x∈(0,+∞)时,m′(x)>0,
所以m(x)在(-1,0)上是减函数,在(0,+∞)上是增函数,
所以m(x)≥m(0)=0,
即f′(x)≥0,所以f(x)在(-1,+∞)上是增函数,
即f(x)的增区间为(-1,+∞),
故选:A.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=logax-$\frac{4}{x}$(a>1)在[1,2]上的最大值为0,则a=(  )
A.2B.$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的线性回归方程为(  )
A.y=x+1B.y=x+2C.y=2x+1D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆⊙O交BC于点E,DF是⊙O的切线交BC于点F,且EC=3EF=3.
(Ⅰ)若E为BC的中点,BD=$\frac{7}{2}$,求DE的长;
(Ⅱ)求$\frac{DE}{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),根据收集到的数据可知x1+x2+x3+x4+x5=150,由最小二乘法求得回归直线方程为$\widehat{y}$=0.67x+24.9,则y1+y2+y3+y4+y5=(  )
A.45B.125.4C.225D.350.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.总体(x,y)的一组样本数据为:
x1234
y3354
(1)若x,y线性相关,求回归直线方程;
(2)当x=6时,估计y的值.
附:回归直线方程$\hat y$=$\hat b$x+$\hat a$,其中$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$,$\hat b$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{{\sum_{y=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)为(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2016)2f(x+2016)-9f(-3)>0的解集为(-∞,-2019).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列数列{an}的通项公式:
(1)a1=1,an+1=2an+1;
(2)a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$
(3)a1=2,an+1=an2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在($\frac{x}{2}$-$\frac{1}{\root{3}{x}}$)n的展开式中,只有第7项的二项式系数最大,则展开式常数项是(  )
A.$\frac{55}{2}$B.-$\frac{55}{2}$C.-28D.28

查看答案和解析>>

同步练习册答案