【题目】春节期间,佳怡准备去探望奶奶,她到商店买了一盒点心.为了美观起见,售货员对点心盒做了一个捆扎(如图(1)所示),并在角上配了一个花结.售货员说,这样的捆扎不仅漂亮,而且比一般的十字捆扎(如图(2)所示)包装更节省彩绳.你同意这种说法吗?请给出你的理由.(注;长方体点心盒的高小于长、宽.)
![]()
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
![]()
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图所示的某种容器的体积为
,它是由圆锥和圆柱两部分连接而成,圆柱与圆锥的底面半径都为
.圆锥的高为
,母线与底面所成的角为
;圆柱的高为
,已知圆柱底面的造价为
元
,圆柱侧面造价为
元
,圆锥侧面造价为![]()
元
.
![]()
(1)将圆柱的高
表示为底面半径
的函数,并求出定义域;
(2)当容器造价最低时,圆柱的底面半径
为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,
为曲线
上的动点,
与
轴、
轴的正半轴分别交于
,
两点.
(1)求线段
中点
的轨迹的参数方程;
(2)若
是(1)中点
的轨迹上的动点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司一年需购买某种原料400吨,设公司每次都购买
吨,每次运费为4万元,一年的总存储费用为
万元.
(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?
(2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
为抛物线
外一点,过点
作抛物线
的两条切线
,
,切点分别为
,
.
![]()
(Ⅰ)若点
为
,求直线
的方程;
(Ⅱ)若点
为圆
上的点,记两切线
,
的斜率分别为
,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,选项正确的是( )
A. 在回归直线
中,变量
时,变量
的值一定是15
B. 两个变量相关性越强,则相关系数
就越接近于1
C. 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关
D. 若某商品的销售量
(件)与销售价格
(元/件)存在线性回归方程为
,当销售价格为10元时,销售量为100件左右
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com