精英家教网 > 高中数学 > 题目详情
2.若实数x、y满足x+2y=1,则3x+9y的最小值为$2\sqrt{3}$.

分析 利用基本不等式和指数运算的性质即可得出.

解答 解:∵实数x,y满足x+2y=1,
∴3x+9y≥2$\sqrt{{3}^{x}•{9}^{y}}$=2$\sqrt{{3}^{x+2y}}$=2$\sqrt{3}$,当且仅当x=2y=$\frac{1}{2}$时取等号.
因此3x+9y的最小值为2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.

点评 本题考查了基本不等式和指数运算的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10…,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形数N(n,4)=n2
五边形数N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n
六边形数N(n,6)=2n2-n

可以推测N(n,k)的表达式,由此计算N(10,16)=660.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在正方体ABCD-A1B1C1D1中,E,F分别为A1D1和CC1的中点.
(Ⅰ)求证:EF∥平面ACD1
(Ⅱ)求证:平面ACD1⊥平面BDD1B1
(Ⅲ)求异面直线EF与AB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,A<$\frac{π}{2}$且sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$.
(1)求sinA的值;
(2)若△ABC的面积s=24,b=10,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在验证吸烟与否与患肺炎与否有关的统计中,根据计算结果,有99.5%的把握认为这两件事情有关,那么K2的一个可能取值为(  )
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
A.6.785B.5.802C.9.697D.3.961

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某城市号召中学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该城市某学校学生会共有12名学生,他们参加活动的次数统计如图所示.
(Ⅰ)从学生会中任意选两名学生组成一个小组,若这两人参加活动次数恰好相等,则称该小组为“和谐小组”,求任选该校两名学生会成员组成的小组是“和谐小组”的概率;
(Ⅱ)用样本估计总体,从该城市的中学生中任选4个小组(每小组两人),求这4个小组中“和谐小组”的组数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}为等差数列,且a5+a6=22,a3=7,则a8=(  )
A.11B.15C.29D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点.已知过CD与E的平面与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为(  )
A.2B.$\sqrt{3}$C.$\sqrt{6}$D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-xlnx+ax,g(x)=$\frac{1}{1+x}$.
(1)若a=2,求函数f(x)的单调区间,并求f(x)的最大值;
(2)若不等式f(x)≤g(x)对任意实数x∈[1,+∞)恒成立,求实数a的取值范围;
(3)求证:不等式$\sum_{k=1}^{n}$lnk≥n($\frac{1}{2}$-$\frac{1}{n+1}$)(n∈N*).

查看答案和解析>>

同步练习册答案