精英家教网 > 高中数学 > 题目详情
7.某城市号召中学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该城市某学校学生会共有12名学生,他们参加活动的次数统计如图所示.
(Ⅰ)从学生会中任意选两名学生组成一个小组,若这两人参加活动次数恰好相等,则称该小组为“和谐小组”,求任选该校两名学生会成员组成的小组是“和谐小组”的概率;
(Ⅱ)用样本估计总体,从该城市的中学生中任选4个小组(每小组两人),求这4个小组中“和谐小组”的组数X的分布列及数学期望.

分析 (Ⅰ)设“该校两名学生会成员组成的小组是‘和谐小组’”为事件A,利用互斥事件概率加法公式能求出任选该校两名学生会成员组成的小组是“和谐小组”的概率.
(Ⅱ)由$X~B(4,\frac{1}{3})$,能求出X的分布列和数学期望.

解答 解:(Ⅰ)设“该校两名学生会成员组成的小组是‘和谐小组’”为事件A,
则任选该校两名学生会成员组成的小组是“和谐小组”的概率P(A)=$\frac{C_2^2+C_6^2+C_4^2}{{C_{12}^2}}=\frac{1}{3}$
(Ⅱ)∵$X~B(4,\frac{1}{3})$,∴$P(X=k)=C_4^k•{({\frac{1}{3}})^k}•{({\frac{2}{3}})^{4-k}}(k=0,1,2,3,4)$,
P(X=0)=${C}_{4}^{0}(\frac{2}{3})^{4}$=$\frac{16}{81}$,
P(X=1)=${C}_{4}^{1}(\frac{1}{3})(\frac{2}{3})^{3}$=$\frac{32}{81}$,
P(X=2)=${C}_{4}^{2}(\frac{1}{3})^{2}(\frac{2}{3})^{2}$=$\frac{8}{27}$,
P(X=3)=${C}_{4}^{3}(\frac{1}{3})^{3}(\frac{2}{3})$=$\frac{8}{81}$,
P(X=4)=${C}_{4}^{4}(\frac{1}{3})^{4}$=$\frac{1}{81}$,
∴X的分布列为:

 X 0 1 2 3 4
 P $\frac{16}{81}$ $\frac{32}{81}$ $\frac{8}{27}$ $\frac{8}{81}$ $\frac{1}{81}$
∵由$X~B(4,\frac{1}{3})$,∴EX=4×$\frac{1}{3}$=$\frac{4}{3}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.一款底面为正方形的长方体无盖金属容器(忽略其厚度),如图所示,当其容积为500cm3时,问容器的底面边长为多少时,所使用材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,|x|+cosx≥0”的否定是(  )
A.?x∈R,|x|+cosx<0B.?x∈R,|x|+cosx≤0C.?x∈R,|x|+cosx<0D.?x∈R,|x|+cosx≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取1个球,记下颜色后放回.若连续取三次,用X表示取出红球的个数,则E(X)+D(X)=(  )
A.2B.$\frac{2}{3}$C.$\frac{5}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若实数x、y满足x+2y=1,则3x+9y的最小值为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,如图,∠C=90°,AC=6,BC=8,设直线l与斜边AB交于点E,与直角边交于点F.设AE=x,是否存在直线l同时平分△ABC的周长和面积?若存在直线l,求出x的值,若不存在直线l,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上周期为3的奇函数,若tanα=3,则f(2015sin2α)=(  )
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=x2-2x(-1≤x≤3)的值域是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若z=2+i,则$\frac{4i}{z\overline z-1}$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案