精英家教网 > 高中数学 > 题目详情
15.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取1个球,记下颜色后放回.若连续取三次,用X表示取出红球的个数,则E(X)+D(X)=(  )
A.2B.$\frac{2}{3}$C.$\frac{5}{3}$D.$\frac{4}{3}$

分析 由已知得X~B(3,$\frac{1}{3}$),由此能求出E(X),D(X),即可得出结论.

解答 解:袋中有15个除了颜色外完全相同的球,其中有10个白球,5个红,从中任取1球,记住颜色后再放回,连续摸取3次,
则每次取到红球的概率都是P=$\frac{5}{15}$=$\frac{1}{3}$,
设X为取得红球的次数,则X~B(3,$\frac{1}{3}$),
∴E(X)=3×$\frac{1}{3}$=1,D(X)=3×$\frac{1}{3}$×(1-$\frac{1}{3}$)=$\frac{2}{3}$,
∴E(X)+D(X)=$\frac{5}{3}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知矩阵P=$({\begin{array}{l}m&1\\{3m}&{-m}\end{array}})$,Q=$({\begin{array}{l}x\\ y\end{array}})$,M=$({\begin{array}{l}{-2}\\ m\end{array}})$,N=$({\begin{array}{l}1\\{m+3}\end{array}})$,若PQ=M+N.
(1)写出PQ=M+N所表示的关于x、y的二元一次方程组;
(2)用行列式解上述二元一次方程组.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义在R上的函数f(x)满足:f(1)=1,f(x)<f′(x),则关于x的不等式f(x+1)<ex的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平行四边形ABCD中,AC与BD交于点O,F是线段DC上的点.若DC=3DF,设$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,A<$\frac{π}{2}$且sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$.
(1)求sinA的值;
(2)若△ABC的面积s=24,b=10,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线y=2x+1与曲线y=x3+ax+b相切于点(1,3),则实数b的值为(  )
A.1B.-3C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某城市号召中学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该城市某学校学生会共有12名学生,他们参加活动的次数统计如图所示.
(Ⅰ)从学生会中任意选两名学生组成一个小组,若这两人参加活动次数恰好相等,则称该小组为“和谐小组”,求任选该校两名学生会成员组成的小组是“和谐小组”的概率;
(Ⅱ)用样本估计总体,从该城市的中学生中任选4个小组(每小组两人),求这4个小组中“和谐小组”的组数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=xex.     
(1)求曲线f(x)在x=1处的切线方程;
(2)求f(x)的单调区间与极值.
(3)若方程ex=$\frac{a}{x}$有实数解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点.
(1)求二面角B-A1D-A的平面角的余弦值;
(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定点F的位置并证明结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案