精英家教网 > 高中数学 > 题目详情
20.已知直线y=2x+1与曲线y=x3+ax+b相切于点(1,3),则实数b的值为(  )
A.1B.-3C.3D.-1

分析 利用导数的几何意义可得:f′(1)=3+a=2,又3=1+a+b,联立解出即可得出.

解答 解:y=f(x)=x3+ax+b,f′(x)=3x2+a,
由题意可得:f′(1)=3+a=2,3=1+a+b,
联立解得:a=-1,b=3.
故选:C.

点评 本题考查了导数的几何意义、切线方程,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求证:ac+bd≤$\sqrt{{a}^{2}+{b}^{2}}$•$\sqrt{{c}^{2}+{d}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$-alnx(a∈R).
(1)试讨论函数的单调性;
(2)若函数f(x)在(1,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(4,-2),若λ$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则λ等于(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取1个球,记下颜色后放回.若连续取三次,用X表示取出红球的个数,则E(X)+D(X)=(  )
A.2B.$\frac{2}{3}$C.$\frac{5}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)在[a,b]上的图象是连续不断的一条曲线,且a≤f(x)≤b,试问:在[a,b]中是否存在常数c,使得f(c)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,如图,∠C=90°,AC=6,BC=8,设直线l与斜边AB交于点E,与直角边交于点F.设AE=x,是否存在直线l同时平分△ABC的周长和面积?若存在直线l,求出x的值,若不存在直线l,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{a^x},x≤1\\{x^2}-6x+7,x>1\end{array}\right.$(a>0,a≠1),若函数y=|f(x)|-ax有三个零点,则实数a的取值范围是(6-2$\sqrt{7}$,1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$x2-5x+4lnx.
(1)求y=f′(x);
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案