精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{1}{2}$x2-5x+4lnx.
(1)求y=f′(x);
(2)求函数f(x)的单调区间.

分析 (1)直接利用求导法则求解即可.
(2)利用导数大于0与小于0,求解函数的单调区间即可.

解答 解:(1)因为$f'(x)=x+\frac{4}{x}-5$.(2分)
(2)要使f(x)有意义,则x的取值范围是(0,+∞).(4分)
由f'(x)>0得$x+\frac{4}{x}-5>0$.(5分)
因为x>0,所以x2-5x+4>0,即x<1,或x>4.(7分)
由f'(x)<0得$x+\frac{4}{x}-5<0$(8分)
因为x>0,所以x2-5x+4<0,即1<x<4.(10分)
所以f(x)的单调增区间为(0,1),(4,+∞);单调减区间为(1,4).(12分)

点评 本题考查函数的导数的应用,单调区间的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知直线y=2x+1与曲线y=x3+ax+b相切于点(1,3),则实数b的值为(  )
A.1B.-3C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥M-ABCD中,底面ABCD为矩形,MD⊥平面ABCD,且MD=DA=1,E为MA中点.
(1)求证:DE⊥MB;
(2)若DC=2,求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:

(1)完善如图3该老师绘制男生频率分布直方图的流程图.
(2)根据以上两个直方图完成下面的2×2列联表:
优秀不优秀总计
男生
女生
总计
(3)根据(2)中表格的数据计算,你是否有95%的把握认为学生的数学成绩是否优秀与性别之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点.
(1)求二面角B-A1D-A的平面角的余弦值;
(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定点F的位置并证明结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\frac{{{x^2}+1}}{x}$,g(x)=$\frac{x}{e^x}$,对任意x1,x2∈(0,+∞),不等式$\frac{{g({x_1})}}{k}$≤$\frac{{f({x_2})}}{k+1}$恒成立,则正数k的取值范围是$k≥\frac{1}{2e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两条平行直线l1:$\sqrt{3}$x-y+1=0与l2:$\sqrt{3}$x-y+3=0.
(1)若直线n与l1、l2都垂直,且与坐标轴构成的三角形的面积是2$\sqrt{3}$,求直线n的方程.
(2)若直线m经过点($\sqrt{3}$,4),且被l1、l2所截得的线段长为2,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“直线l:y=kx+2k-1在坐标轴上截距相等”是“k=-1”的(  )条件.
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线Ax+By+C=0的方向向量为(B,-A),现有常数m>0,向量$\overrightarrow{a}$=(0,1),向量$\overrightarrow{b}$=(m,0),经过点A(m,0)以λ$\overrightarrow{a}$+$\overrightarrow{b}$为方向向量的直线与经过点B(-m,0),以λ$\overrightarrow{b}$-4$\overrightarrow{a}$为方向向量的直线交于点P,其中λ∈R.
(Ⅰ)求点P的轨迹E;
(Ⅱ)若m=2$\sqrt{5}$,F(4,0),问是否存在实数k使得过点F以k为斜率的直线与轨迹E交于M,N两点,并且S△OMN=$\frac{4\sqrt{10}}{3}$(O为坐标原点)?若存在,求出k的值;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案