16£®ÒÑÖªÖ±ÏßAx+By+C=0µÄ·½ÏòÏòÁ¿Îª£¨B£¬-A£©£¬ÏÖÓг£Êým£¾0£¬ÏòÁ¿$\overrightarrow{a}$=£¨0£¬1£©£¬ÏòÁ¿$\overrightarrow{b}$=£¨m£¬0£©£¬¾­¹ýµãA£¨m£¬0£©ÒÔ¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$Ϊ·½ÏòÏòÁ¿µÄÖ±ÏßÓë¾­¹ýµãB£¨-m£¬0£©£¬ÒÔ¦Ë$\overrightarrow{b}$-4$\overrightarrow{a}$Ϊ·½ÏòÏòÁ¿µÄÖ±Ïß½»ÓÚµãP£¬ÆäÖЦˡÊR£®
£¨¢ñ£©ÇóµãPµÄ¹ì¼£E£»
£¨¢ò£©Èôm=2$\sqrt{5}$£¬F£¨4£¬0£©£¬ÎÊÊÇ·ñ´æÔÚʵÊýkʹµÃ¹ýµãFÒÔkΪбÂʵÄÖ±ÏßÓë¹ì¼£E½»ÓÚM£¬NÁ½µã£¬²¢ÇÒS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êÔ­µã£©£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÍƵ¼³öÖ±ÏßAPµÄ·½³ÌΪy=$\frac{¦Ë}{m}$£¨x-m£©£¬Ö±ÏßNPµÄ·½³ÌΪy=-$\frac{4}{¦Ëm}$£¨x+m£©£¬ÁªÁ¢·½³Ì×éµÃ$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{4}$=1£¬ÓÉ´ËÄÜÇó³öµãPµÄ¹ì¼£E£®
£¨2£©¹ì¼£EµÄ·½³ÌΪ$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1$£¬¹ýµãF£¨4£¬0£©ÒÔkΪбÂʵÄÖ±Ïߵķ½³ÌΪy=k£¨x-4£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+5k2£©x2-40k2x+80k2-20=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽÄÜÇó³ö²»´æÔÚʵÊýkʹµÃ¹ýµãFÒÔkΪбÂʵÄÖ±ÏßÓë¹ì¼£E½»ÓÚM£¬NÁ½µã£¬²¢ÇÒS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êÔ­µã£©£®

½â´ð ½â£º£¨¢ñ£©¡ß³£Êým£¾0£¬ÏòÁ¿$\overrightarrow{a}$=£¨0£¬1£©£¬ÏòÁ¿$\overrightarrow{b}$=£¨m£¬0£©£¬
¾­¹ýµãA£¨m£¬0£©ÒÔ¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$Ϊ·½ÏòÏòÁ¿µÄÖ±ÏßÓë¾­¹ýµãB£¨-m£¬0£©£¬ÒÔ¦Ë$\overrightarrow{b}$-4$\overrightarrow{a}$Ϊ·½ÏòÏòÁ¿µÄÖ±Ïß½»ÓÚµãP£¬ÆäÖЦˡÊR£®
¡à¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$=£¨m£¬¦Ë£©£¬¦Ë$\overrightarrow{b}$-4$\overrightarrow{a}$=£¨¦Ëm£¬-4£©£¬
¡àÖ±ÏßAPµÄ·½³ÌΪy=$\frac{¦Ë}{m}$£¨x-m£©£¬¢Ù£¬Ö±ÏßNPµÄ·½³ÌΪy=-$\frac{4}{¦Ëm}$£¨x+m£©£¬
ÁªÁ¢¢Ù¢Ú£¬ÏûÈ¥¦Ë£¬µÃ£º${y}^{2}=-\frac{4}{{m}^{2}}£¨{x}^{2}-{m}^{2}£©$£¬¼´$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{4}$=1£¬
¹Êµ±m=2ʱ£¬¹ì¼£EÊÇÒÔ£¨0£¬0£©ÎªÔ²ÐÄ£¬ÒÔ2Ϊ°ë¾¶µÄÔ²£¬Æä·½³ÌΪ£ºx2+y2=4£®
µ±m£¾2ʱ£¬¹ì¼£EÊÇÒÔÔ­µãΪÖÐÐÄ£¬ÒÔ£¨$¡À\sqrt{{m}^{2}-4}$£¬0£©Îª½¹µãµÄÍÖÔ²£®
µ±0£¼m£¼2ʱ£¬¹ì¼£EÊÇÒÔÔ­µãΪÖÐÐÄ£¬ÒÔ£¨0£¬$¡À\sqrt{4-{m}^{2}}$£©Îª½¹µãµÄÍÖÔ²£®
£¨2£©¡ßm=2$\sqrt{5}$£¬F£¨4£¬0£©£¬
¡à¹ì¼£EÊÇÒÔÔ­µãΪԭÐÄ£¬ÒÔ£¨¡À4£¬0£©Îª½¹µã£¬³¤°ëÖáΪ2$\sqrt{5}$µÄÍÖÔ²£¬
¡à¹ì¼£EµÄ·½³ÌΪ$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1$£¬
¹ýµãF£¨4£¬0£©ÒÔkΪбÂʵÄÖ±Ïߵķ½³ÌΪy=k£¨x-4£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+5k2£©x2-40k2x+80k2-20=0£¬
¡÷£¾0£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{40{k}^{2}}{1+5{k}^{2}}$£¬x1x2=$\frac{80{k}^{2}-20}{1+5{k}^{2}}$£¬
|MN|=$\sqrt{£¨1+{k}^{2}£©[£¨}{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$=$\frac{4\sqrt{5}£¨1+{k}^{2}£©}{1+5{k}^{2}}$£¬
Oµ½Ö±Ïßy=k£¨x-4£©µÄ¾àÀëd=$\frac{|4k|}{\sqrt{1+{k}^{2}}}$£¬
¡ßS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êÔ­µã£©£¬
¡àS¡÷OMN=$\frac{1}{2}|MN|•d$=$\frac{8\sqrt{5}|k|•\sqrt{1+{k}^{2}}}{1+5{k}^{2}}$=$\frac{4\sqrt{10}}{3}$£¬
ÕûÀí£¬µÃ22k4+7k2+1=0£¬
¡÷=49-88£¼0£¬¡à22k4+7k2+1=0Î޽⣬
¡à²»´æÔÚʵÊýkʹµÃ¹ýµãFÒÔkΪбÂʵÄÖ±ÏßÓë¹ì¼£E½»ÓÚM£¬NÁ½µã£¬²¢ÇÒS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êÔ­µã£©£®

µãÆÀ ±¾Ì⿼²éµãµÄ¹ì¼£µÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄÖ±Ïß·½³ÌÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-5x+4lnx£®
£¨1£©Çóy=f¡ä£¨x£©£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ${S_n}=2{a_n}-2£¨n¡Ê{N^*}£©$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Âú×ã${T_n}={n^2}£¨n¡Ê{N^*}£©$£®
£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÊýÁÐ{an•bn}µÄǰnÏîºÍDn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬a2=3£¬ÇÒa1¡¢a3¡¢a7³ÉµÈ±ÈÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éè${b_n}=\left\{{\begin{array}{l}{{2^{a_n}}£¬}&{nÎªÆæÊý}\\{\frac{2}{3}{a_n}£¬}&{nΪżÊý}\end{array}}\right.$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇóS16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®µ±m=5£¬n=6ʱ£¬ÔËÐÐÈçÏÂËùʾµÄ³ÌÐò¿òͼ£¬³ÌÐò½áÊøÊ±£¬ÅжϿò±»Ö´ÐеĴÎÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈçͼËùʾµÄÈý½ÇÐÎÊýÕó½Ì¡°Å£¶Ùµ÷ºÍÈý½ÇÐΡ±£¬ËüÃÇÊÇÓÉÕûÊýµÄµ¹Êý×é³ÉµÄ£¬µÚnÐÐÓÐn¸öÊýÇÒÁ½¶ËµÄÊý¾ùΪ$\frac{1}{n}£¨{n¡Ý2}£©$£¬Ã¿¸öÊýÊÇËüÏÂÒ»ÐÐ×óÓÒÏàÁÚÁ½ÊýµÄºÍ£¬Èçͼ

Ôò£¨1£©µÚ6ÐеÚ2¸öÊý£¨´Ó×óµ½ÓÒ£©Îª$\frac{1}{30}$£»
£¨2£©µÚnÐеÚ3¸öÊý£¨´Ó×óµ½ÓÒ£©Îª$\frac{1}{n£¨n-1£©£¨n-2£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®·ÖÀà±äÁ¿xºÍyµÄÁÐÁª±íÈçÏ£¬Ôò£¨¡¡¡¡£©
y1y2×ܼÆ
x1aba+b
x2cdc+d
×ܼÆa+cb+da+b+c+d
A£®ad-bcԽС£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½ÈõB£®ad-bcÔ½´ó£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Èõ
C£®£¨ad-bc£©2Ô½´ó£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Ç¿D£®£¨ad-bc£©2ԽС£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Ç¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÖ±Ïßl¹ýµãP£¨2£¬3£©£¬
£¨1£©ÈôÖ±ÏßlÔÚxÖá¡¢yÖáÉϵĽؾàÖ®ºÍµÈÓÚ0£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÁ½Ìõ×ø±êÖáÔÚµÚÒ»ÏóÏÞËùΧ³ÉµÄÈý½ÇÐεÄÃæ»ýΪ16£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÇóÇúÏßy=$\frac{1}{x}$ÓëÖ±Ïßy=x£¬x=2ËùΧ³ÉµÄͼÐÎÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸