·ÖÎö £¨¢ñ£©ÍƵ¼³öÖ±ÏßAPµÄ·½³ÌΪy=$\frac{¦Ë}{m}$£¨x-m£©£¬Ö±ÏßNPµÄ·½³ÌΪy=-$\frac{4}{¦Ëm}$£¨x+m£©£¬ÁªÁ¢·½³Ì×éµÃ$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{4}$=1£¬ÓÉ´ËÄÜÇó³öµãPµÄ¹ì¼£E£®
£¨2£©¹ì¼£EµÄ·½³ÌΪ$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1$£¬¹ýµãF£¨4£¬0£©ÒÔkΪбÂʵÄÖ±Ïߵķ½³ÌΪy=k£¨x-4£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+5k2£©x2-40k2x+80k2-20=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽÄÜÇó³ö²»´æÔÚʵÊýkʹµÃ¹ýµãFÒÔkΪбÂʵÄÖ±ÏßÓë¹ì¼£E½»ÓÚM£¬NÁ½µã£¬²¢ÇÒS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êԵ㣩£®
½â´ð ½â£º£¨¢ñ£©¡ß³£Êým£¾0£¬ÏòÁ¿$\overrightarrow{a}$=£¨0£¬1£©£¬ÏòÁ¿$\overrightarrow{b}$=£¨m£¬0£©£¬
¾¹ýµãA£¨m£¬0£©ÒÔ¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$Ϊ·½ÏòÏòÁ¿µÄÖ±ÏßÓë¾¹ýµãB£¨-m£¬0£©£¬ÒÔ¦Ë$\overrightarrow{b}$-4$\overrightarrow{a}$Ϊ·½ÏòÏòÁ¿µÄÖ±Ïß½»ÓÚµãP£¬ÆäÖЦˡÊR£®
¡à¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$=£¨m£¬¦Ë£©£¬¦Ë$\overrightarrow{b}$-4$\overrightarrow{a}$=£¨¦Ëm£¬-4£©£¬
¡àÖ±ÏßAPµÄ·½³ÌΪy=$\frac{¦Ë}{m}$£¨x-m£©£¬¢Ù£¬Ö±ÏßNPµÄ·½³ÌΪy=-$\frac{4}{¦Ëm}$£¨x+m£©£¬
ÁªÁ¢¢Ù¢Ú£¬ÏûÈ¥¦Ë£¬µÃ£º${y}^{2}=-\frac{4}{{m}^{2}}£¨{x}^{2}-{m}^{2}£©$£¬¼´$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{4}$=1£¬
¹Êµ±m=2ʱ£¬¹ì¼£EÊÇÒÔ£¨0£¬0£©ÎªÔ²ÐÄ£¬ÒÔ2Ϊ°ë¾¶µÄÔ²£¬Æä·½³ÌΪ£ºx2+y2=4£®
µ±m£¾2ʱ£¬¹ì¼£EÊÇÒÔÔµãΪÖÐÐÄ£¬ÒÔ£¨$¡À\sqrt{{m}^{2}-4}$£¬0£©Îª½¹µãµÄÍÖÔ²£®
µ±0£¼m£¼2ʱ£¬¹ì¼£EÊÇÒÔÔµãΪÖÐÐÄ£¬ÒÔ£¨0£¬$¡À\sqrt{4-{m}^{2}}$£©Îª½¹µãµÄÍÖÔ²£®
£¨2£©¡ßm=2$\sqrt{5}$£¬F£¨4£¬0£©£¬
¡à¹ì¼£EÊÇÒÔÔµãΪÔÐÄ£¬ÒÔ£¨¡À4£¬0£©Îª½¹µã£¬³¤°ëÖáΪ2$\sqrt{5}$µÄÍÖÔ²£¬
¡à¹ì¼£EµÄ·½³ÌΪ$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1$£¬
¹ýµãF£¨4£¬0£©ÒÔkΪбÂʵÄÖ±Ïߵķ½³ÌΪy=k£¨x-4£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+5k2£©x2-40k2x+80k2-20=0£¬
¡÷£¾0£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{40{k}^{2}}{1+5{k}^{2}}$£¬x1x2=$\frac{80{k}^{2}-20}{1+5{k}^{2}}$£¬
|MN|=$\sqrt{£¨1+{k}^{2}£©[£¨}{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$=$\frac{4\sqrt{5}£¨1+{k}^{2}£©}{1+5{k}^{2}}$£¬
Oµ½Ö±Ïßy=k£¨x-4£©µÄ¾àÀëd=$\frac{|4k|}{\sqrt{1+{k}^{2}}}$£¬
¡ßS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êԵ㣩£¬
¡àS¡÷OMN=$\frac{1}{2}|MN|•d$=$\frac{8\sqrt{5}|k|•\sqrt{1+{k}^{2}}}{1+5{k}^{2}}$=$\frac{4\sqrt{10}}{3}$£¬
ÕûÀí£¬µÃ22k4+7k2+1=0£¬
¡÷=49-88£¼0£¬¡à22k4+7k2+1=0Î޽⣬
¡à²»´æÔÚʵÊýkʹµÃ¹ýµãFÒÔkΪбÂʵÄÖ±ÏßÓë¹ì¼£E½»ÓÚM£¬NÁ½µã£¬²¢ÇÒS¡÷OMN=$\frac{4\sqrt{10}}{3}$£¨OÎª×ø±êԵ㣩£®
µãÆÀ ±¾Ì⿼²éµãµÄ¹ì¼£µÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄÖ±Ïß·½³ÌÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| y1 | y2 | ×Ü¼Æ | |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| ×Ü¼Æ | a+c | b+d | a+b+c+d |
| A£® | ad-bcԽС£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Èõ | B£® | ad-bcÔ½´ó£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Èõ | ||
| C£® | £¨ad-bc£©2Ô½´ó£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Ç¿ | D£® | £¨ad-bc£©2ԽС£¬ËµÃ÷xÓëyµÄ¹ØÏµÔ½Ç¿ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com