18£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ½¹¾àΪ2£¬AÊÇEµÄÓÒ¶¥µã£¬P¡¢QÊÇEÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½µã£¬ÇÒÖ±ÏßPAµÄбÂÊÓëÖ±ÏßQAµÄбÂÊÖ®»ýΪ$-\frac{3}{4}$£®
£¨¢ñ£©ÇóEµÄ·½³Ì£»
£¨¢ò£©¹ýEµÄÓÒ½¹µã×÷Ö±ÏßÓëE½»ÓÚM¡¢NÁ½µã£¬Ö±ÏßMA¡¢NAÓëÖ±Ïßx=3·Ö±ð½»ÓÚC¡¢DÁ½µã£¬Éè¡÷ACDÓë¡÷AMNµÄÃæ»ý·Ö±ð¼ÇΪS1¡¢S2£¬Çó2S1-S2µÄ×îСֵ£®

·ÖÎö £¨I£©Í¨¹ýP¡¢QÊÇEÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½µã£¬ÇÒÖ±ÏßPAµÄбÂÊÓëÖ±ÏßQAµÄбÂÊÖ®»ýΪ$-\frac{3}{4}$£¬¼°½¹¾àΪ2£¬¼ÆËã¿ÉµÃa2=4£¬b2=3£¬´Ó¶ø¿ÉµÃEµÄ·½³Ì£»
£¨II£©ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬¿ÉµÃÖ±ÏßMAµÄ·½³Ì£¬ÁªÁ¢Ö±ÏßMNÓëÍÖÔ²EµÄ·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¿ÉµÃS1£¬S2µÄ±í´ïʽ£¬Í¨¹ý»»Ôª·¨¼ÆËã¿ÉµÃ½áÂÛ•

½â´ð ½â£º£¨I£©¸ù¾ÝÌâÒ⣬ÉèP£¨x0£¬y0£©£¬Q£¨-x0£¬-y0£©£¬
Ôò$y_0^2=\frac{b^2}{a^2}£¨{a^2}-x_0^2£©$£¬${k_{PA}}•{k_{QA}}=\frac{y_0}{{{x_0}-a}}•\frac{y_0}{{{x_0}+a}}=\frac{y_0^2}{{x_0^2-{a^2}}}=-\frac{b^2}{a^2}$£¬ÒÀÌâÒâÓÐ$\frac{b^2}{a^2}=\frac{3}{4}$£¬
ÓÖc=1£¬ËùÒÔa2=4£¬b2=3£¬
¹ÊÍÖÔ²EµÄ·½³ÌΪ£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£»
£¨II£©ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬´úÈëEµÄ·½³ÌµÃ£¨3m2+4£©y2+6my-9=0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíÖª${y_1}+{y_2}=-\frac{6m}{{3{m^2}+4}}£¬{y_1}{y_2}=-\frac{9}{{3{m^2}+4}}$£¬
ÓÖÖ±ÏßMAµÄ·½³ÌΪ$y=\frac{y_1}{{{x_1}-2}}£¨x-2£©$£¬½«x=3´úÈ룬
µÃ${y_C}=\frac{y_1}{{{x_1}-2}}=\frac{y_1}{{m{y_1}-1}}$£¬Í¬Àí${y_D}=\frac{y_2}{{m{y_2}-1}}$£¬
ËùÒÔ$|CD|=|{y_C}-{y_D}|=\frac{{|{y_1}-{y_2}|}}{{{m^2}{y_1}{y_2}-m£¨{y_1}+{y_2}£©+1}}=3\sqrt{{m^2}+1}$£¬
ËùÒÔ${S_1}=\frac{1}{2}|CD|=\frac{3}{2}\sqrt{{m^2}+1}$£¬${S_2}=\frac{1}{2}|AF|•|{y_1}-{y_2}|=\frac{{6\sqrt{{m^2}+1}}}{{3{m^2}+4}}$£¬
Ôò2S1-S2=3$\sqrt{{m}^{2}+1}$-$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬
Áî$\sqrt{{m^2}+1}=t£¨t¡Ý1£©$£¬Ôòm2=t2-1£¬ËùÒÔ$2{S_1}-{S_2}=3t-\frac{6t}{{3{t^2}+1}}$£¬
¼Ç$f£¨t£©=3t-\frac{6t}{{3{t^2}+1}}$£¬Ôò$f'£¨t£©=3+\frac{{6£¨3{t^2}-1£©}}{{{{£¨3{t^2}+1£©}^2}}}£¾0$£¬
ËùÒÔf£¨t£©ÔÚ[1£¬+¡Þ£©µ¥µ÷µÝÔö£¬´Ó¶øf£¨t£©µÄ×îСֵΪ$f£¨1£©=\frac{3}{2}$£¬
¹Ê2S1-S2µÄ×îСֵΪ$\frac{3}{2}$•

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí£¬»»Ôª·¨µÈ֪ʶ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªxΪµÚ¶þÏóÏ޽ǣ¬ÇÒtan2x+3tanx-4=0£¬Ôò$\frac{sinx+cosx}{2sinx-cosx}$=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖªÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB=BC£¬EΪACÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAB1¡ÎÆ½ÃæBC1E£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæBC1E¡ÍÆ½ÃæACC1A1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éèf£¨x£©=|lgx|£¬Èôº¯Êýg£¨x£©=f£¨x£©-axÔÚÇø¼ä£¨0£¬4£©ÉÏÓÐÈý¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{0£¬\frac{1}{e}}£©$B£®$£¨{\frac{lg2}{2}£¬\frac{lge}{e}}£©$C£®$£¨{\frac{lg2}{2}£¬e}£©$D£®$£¨{0£¬\frac{lg2}{2}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF2µÄÖ±Ïß½»ÍÖÔ²ÓÚP£¬QÁ½µã£¬Èô¡ÏF1PQ=60¡ã£¬|PF1|=|PQ|£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªf£¨x£©=ex-xex-1£¬g£¨x£©=$\frac{f£¨x£©}{x}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©ÇóÖ¤£ºº¯Êýg£¨x£©ÓÐ×î´óÖµg£¨x0£©£¬ÇÒ-2£¼x0£¼-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨x+$\frac{¦Õ}{2}$£©•sin£¨$\frac{¦Ð}{2}$+x+$\frac{¦Õ}{2}$£©£¬ÆäÖЦÕΪʵÊý£¨|¦Õ|£¼¦Ð£©£¬Èôf£¨x£©¡Ü|f£¨$\frac{¦Ð}{6}$£©|£¬¶Ôx¡ÊRºã³ÉÁ¢£¬ÇÒf£¨$\frac{¦Ð}{2}$£©£¾f£¨¦Ð£©£®
£¨1£©Çó¦ÕµÄÖµ¼°f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Éè¦ÁΪÈñ½Ç£¬Èôcos£¨¦Á+$\frac{¦Ð}{6}$£©=$\frac{4}{5}$£¬Çóf£¨¦Á+$\frac{11}{24}$¦Ð£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬ÇÒËüµÄ×ó½¹µãF1ÓëÓÒ¶¥µãAµÄ¾àÀë|AF1|=6£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©¹ýµãT£¨-3£¬0£©×÷ÓëxÖá²»ÖØºÏµÄÖ±Ïßl½»ÍÖÔ²ÓÚP£¬QÁ½µã£¬Á¬½ÓAP£¬AQ·Ö±ð½»Ö±Ïßx=-$\frac{16}{3}$ÓÚR£¬SÁ½µã£¬ÇóÖ¤£ºÖ±ÏßRTÓëÖ±ÏßSTµÄбÂÊÖ®»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÉèÒ»´Îº¯Êýf£¨x£©=kx+b£¬ÒÑÖªf£¨8£©=15£¬ÇÒf£¨2£©£¬f£¨5£©£¬f£¨4£©³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇókºÍbµÄÖµ£»
£¨2£©Ö¤Ã÷£ºf£¨1£©£¬f£¨2£©£¬f£¨3£©£¬f£¨4£©£¬¡­f£¨n£©¡­³ÉµÈ²îÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸