精英家教网 > 高中数学 > 题目详情
3.已知m,l是直线,α,β是平面,给出下列命题:
①若l垂直于α,则l垂直于α内的所有直线,
②若l平行于α,则l平行于α内的所有直线
③若l?β,且l⊥α,则α⊥β
④若m?α,l?β,且α∥β,则m∥l
其中正确的命题的个数是(  )
A.4B.3C.2D.1

分析 根据空间线面位置关系的定义及判定定理或结合图形,给出反例进行判断.

解答 解:对于①,由线面垂直的定义可知①正确;
对于②,若l平行于α内的所有直线,根据平行公理可得:α内的所有直线都互相平行,显然是错误的,故②错误;
对于③,根据面面垂直的判定定理可知③正确;
对于④,若m?α,l?β,且α∥β,则直线l与m无公共点,∴l与m平行或异面,故④错误;
故选C.

点评 本题考查了空间位置关系的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知△ABC的三个内角A,B,C的对边分别是a,b,c,若向量$\overrightarrow{m}$=(a+c,sinB),$\overrightarrow{n}$=(b-c,sinA-sinC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=tanAsinωxcosωx-cosAcos2ωx(ω>0),已知其图象的相邻两条对称轴间的距离为$\frac{π}{2}$,现将y=f(x)的图象上各点向左平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,得到函数y=g(x)的图象,求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正方体ABCD-A1B1C1D1的棱长为2,点P是线段BD1的中点,M是线段B1C1上的动点,则三棱锥M-PBC的体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,离心率为$\frac{\sqrt{3}}{3}$,点P在椭圆C上,且点P在x轴上的正投影恰为F1,在y轴上的正投影为点(0,$\frac{2\sqrt{3}}{3}$).
(1)求椭圆C的方程;
(2)过点F1且倾斜角为$\frac{5π}{6}$的直线l与椭圆C交于A,B两点,过点P且平行于直线l的直线交椭圆C于另一点Q,求证:四边形PABQ为平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{-2{x}^{2}+3x,-2≤x<0}\\{ln\frac{1}{x+1},0≤x≤2}\end{array}\right.$,若g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,则实数a的取值范围为(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$]C.(0,$\frac{1}{e}$)D.(0,$\frac{1}{2e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题p:将函数y=cosx•sinx的图象向右平移$\frac{3π}{4}$个单位可得到y=$\frac{1}{2}$cos2x的图象;命题q:对?m>0,双曲线2x2-y2=m2的离心率为$\sqrt{3}$,则下列结论正确的是(  )
A.p是假命题B.¬p是真命题C.p∨q是真命题D.p∧q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.变量x,y满足约束条件$\left\{\begin{array}{l}x-y≤0\\ y≤10-2x\\ x-1≥0\end{array}$,则z=2x-y的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是一个算法流程图,则输出的x值为(  )
A.95B.47C.23D.11

查看答案和解析>>

同步练习册答案