【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】我市为迎接一项重要的体育赛事,要完成,两座场馆的地基建造工程.某工程队需要把600名工人分成两组,一组完成场馆的甲级标准地基2000,同时另一组完成场馆的乙级标准地基3000;据测算,完成甲级标准地基每平方米的工程量为50人天,完成乙级标准地基每平方米的工程量为30人天.
(1)若工程队分配名工人去场馆,求场馆地基和场馆地基建造时间和(单位:天)的函数解析式;
(2)、两个场馆同时开工,该工程队如何分配两个场馆的工人数量,可以使得工期最短.
(参考数据:,,.备注:若地基面积为平方米,每平方米的工程量为人/天,工人数人,则工期为天.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆A:(x+2)2+y2=32,过B(2,0)且与圆A相切的动圆圆心为P.
(1)求点P的轨迹E的方程;
(2)设过点A的直线l1交曲线E于Q、S两点,过点B的直线l2交曲线E于R、T两点,且l1⊥l2,垂足为W(Q、S、R、T为不同的四个点),求四边形QRST的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为(为参数),P是曲线C上的点且对应的参数为,.直线l过点P且倾斜角为.
(1)求曲线C的普通方程和直线l的参数方程.
(2)已知直线l与x轴,y轴分别交于,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,为上任意一点,,的垂直平分线交于点,记点的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,过的直线交于两点,证明:直线的斜率与直线的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(其中为参数).在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线:的焦点的极坐标为.
(1)求常数的值;
(2)设与交于、两点,且,求的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表:
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
配方的频数分布表:
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106] | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用配方、配方生产的产品的优质品率;
(2)已知用配方生产的一件产品的利润(单位:元)与其质量指标值的关系为,估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品的平均利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,垂直圆O所在的平面,是圆O的一条直径,C为圆周上异于A,B的动点,D为弦的中点,.
(1)证明:平面平面;
(2)若,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com