精英家教网 > 高中数学 > 题目详情
8.已知扇形的圆心角为80°,半径为6,则圆心角所对的弧长为$\frac{8π}{3}$.

分析 根据扇形的圆心角为80°,半径为6,直接利用弧长公式即可计算.

解答 解:扇形的弧长是L=$\frac{80π×6}{180}$=$\frac{8π}{3}$.
故答案为:$\frac{8π}{3}$.

点评 本题考查了扇形弧长的应用,弧长公式为:l=$\frac{nπr}{180}$,根据公式代入求出是解题关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足a1=2,an+1=an+2,则a16=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=2x3-6x2+m(m为常数)在[-2,2]上的最小值为-38,则f(x)在[-2,2]上的最大值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设向量$\overrightarrow a=(1,2),\overrightarrow b=(2,3)$,若向量$λ\overrightarrow a+\overrightarrow b$与向量$\overrightarrow c=(-4,-7)$垂直,则λ=$-\frac{29}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$sin(π+α)=\frac{1}{3}$,则sinα=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=\sqrt{2}sin(4x+\frac{π}{4})$.
(1)f(x)的最大值和最小值.
(2)f(x)在R上的单调区间.
(3)f(x)在$[-\frac{π}{8},\frac{π}{8}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2-4ax+b(a>0)在区间[0,1]上有最大值1和最小值-2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在$f(x)={(\frac{1}{x}+{x^2})^n}$的展开式中,第4项为常数项
(1)求f(x)的展开式中含x-3的项的系数;
(2)求f(x)的展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线l的方程为$|\begin{array}{l}{1}&{0}&{2}\\{x}&{2}&{3}\\{y}&{-1}&{2}\end{array}|$=0,则直线l的倾斜角为π-arctan$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案