精英家教网 > 高中数学 > 题目详情
已知实数x,y满足不等式
x≥0
y≥0
x+2y≤2
,则x-y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义进行求解即可.
解答: 解:作出不等式组对应的平面区域如图:
设z=x-y,得y=x-z表示,斜率为1纵截距为-z的一组平行直线,
平移直线y=x-z,当直线y=x-z经过点C时,直线y=x-z的截距最小,此时z最大,
当直线经过点A(2,0)时,此时直线y=x-z截距最小,z最大,
此时zmax=2-0=2.
故答案为:2
点评:本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

框图表示的程序所输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A、B、C的对边,已知sin2B+sin2C=sin2A+
6
5
sinBsinC.
(1)求cosA的值.
(2)若sinB=2sinC,且△ABC的面积为
16
5
,试求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=
2
2
,椭圆上的点P与两个焦点F1,F2构成的三角形的最大面积为1.
(1)求椭圆的方程.
(2)过圆M:x2+y2=r2(r>0)外一点P(x0,y0)作圆M的两条切线PA,PB(且点分别为A,B),则直线AB的方程为x0x+y0y=r2,类比此结论,过点Q(3,1)作椭圆C的两条切线QD、QE(切点分别为D、E),写出直线DE的方程,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,地面ABCD为矩形,侧面SAD为边长2的正三角形,且面SAD⊥面ABCD.AB=
2
,E、F分别为AD、SC的中点;
(1)求证:BD⊥SC;
(2)求四面体EFCB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图输出的结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(2x-1)5(x-1)5=
a
 
0
2
+a1x+2a2x2+22a3x3+…+29a10x10,则a0+a1+a2+a3+…+a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,若输入x=2,则该程序运行后输出的值等于
 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,|
b
|=2,|2
a
+
b
|=2,则向量
b
在向量
a
方向上的投影是
 

查看答案和解析>>

同步练习册答案