精英家教网 > 高中数学 > 题目详情
设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9=(  )
A.B.-C.D.
A
因为Sn为等比数列{an}的前n项和,所以S3,S6-S3,S9-S6也成等比数列,即8,-1,a7+a8+a9成等比数列,所以a7+a8+a9=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(1)证明:数列{an}是等比数列;
(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列满足, 且,其中.
(1) 求数列的通项公式;
(2) 设数列满足,是否存在正整数,使得成等比数列?若存在,求出所有的的值;若不存在,请说明理由。
(3) 令,记数列的前项和为,其中,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列{an}满足an+1an=9·2n-1n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Snkan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}满足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设公比为q(q>0)的等比数列{an}的前n项和为Sn,若S2=3a2+2,S4=3a4+2,则q=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )
A.Sn=2an-1B.Sn=3an-2
C.Sn=4-3anD.Sn=3-2an

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:
①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln(x).
其中是“保等比数列函数”的是__________.(填序号)

查看答案和解析>>

同步练习册答案