精英家教网 > 高中数学 > 题目详情
10.若函数y=k(x+1)的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,则函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点的概率为$\frac{8\sqrt{3}}{23}$.

分析 由题意画出约束条件的区域,计算函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点可能,利用几何概型公式解答.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,作出可行域如图,
直线y=k(x+1)过定点P(-1,0),
由图可知A(2,$\sqrt{3}$),B(0,$\sqrt{3}$),
则kPA=$\frac{\sqrt{3}}{3}$,kPB=$\sqrt{3}$,
∴$\frac{\sqrt{3}}{3}≤k≤\sqrt{3}$,
函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点,则$\frac{|4k-3+k|}{\sqrt{{k}^{2}+1}}≤\sqrt{2}$,解得-1≤k≤$-\frac{7}{23}$,
所以函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点的概率为:$\frac{-\frac{7}{23}+1}{\sqrt{3}-\frac{\sqrt{3}}{3}}=\frac{8\sqrt{3}}{23}$.
故答案为:$\frac{8\sqrt{3}}{23}$.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.有一个经验级别达到25级的QQ好友,准备将自己QQ农场的15块空地连在一起的5块(如图)种上种植级别分别为22级、23级、25级的樱桃、荔枝和杨桃三种果树种子,如果同一种果树种子必须种在相邻的地中,则不同的种法有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数f(x)=log4(4x+1)-kx(x∈R)是偶函数.
(1)求实数k的值;
(2)若关于x的方程f(x)+x-m=0在[0,1]有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}满足a1=3,an-anan+1=1,An表示{an}前n项之积,则A2015=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+3x|x-c|,其中c∈R.
(1)当$c=\frac{1}{3}$时,是否存在区间[a,b],使得函数f(x)的定义域与值域均为[a,b]?若存在,求出所有可能的区间[a,b],若不存在请说明理由.
(2)若c>0,函数f(x)在区间(a,b)上既有最大值又有最小值,请分别求出a,b的取值范围(用c表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x3-3x在点(1,-2)处的切线斜率是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项和为Sn,a1=2,4Sn=an•an+1
(1)求{an}的通项公式.
(2)设数列{${\frac{1}{a_n^2}$}的前n项和为Tn,求证:$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设O为△ABC的外心(三角形外接圆的心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|$\overrightarrow{AB}$|2,则$\frac{AC}{AB}$=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)9的展开式的第4项的系数是$-\frac{21}{2}$(用数字作答).

查看答案和解析>>

同步练习册答案