精英家教网 > 高中数学 > 题目详情
2.直线L:y=mx+1与椭圆C:ax2+y2=2(a>0)交于A、B两点,以OA、OB为邻边作平行四边形OAPB.
(1)求证:椭圆C:ax2+y2=2(a>0)与直线L:y=mx+1总有两个交点.
(2)当a=2时,求点P的轨迹方程;
(3)是否存在直线L,使OAPB为矩形?若存在,求出此时直线L的方程;若不存在,说明理由.

分析 (1)直线y=mx+1过定点(0,1),且在椭圆的内部,可得结论;
(2)直线y=mx+1过定点(0,1),设A(x1,y1),B(x2,y2),则OP的中点M为($\frac{x}{2}$,$\frac{y}{2}$),且有2x12+y12=2,2x22+y22=2,由此能求出点P的轨迹方程.
(3)假设存在直线l,使OAPB为矩形.由于OA⊥OB,则有x1x2+y1y2=0,运用韦达定理及点在直线上满足直线方程,化简整理得到的方程,解出m,注意检验判别式是否大于0.

解答 (1)证明:直线y=mx+1过定点(0,1),且在椭圆的内部,
∴椭圆C:ax2+y2=2(a>0)与直线L:y=mx+1总有两个交点.
(2)解:设A(x1,y1),B(x2,y2),
则OP的中点M为($\frac{x}{2}$,$\frac{y}{2}$),
且有2x12+y12=2,2x22+y22=2,
以上两式相减,得kAB•kOP=-2,
∴$\frac{\frac{y}{2}-1}{\frac{x}{2}}•\frac{y}{x}$=-2,
∴2x2+y2-2y=0,
点P的轨迹方程为2x2+(y-1)2=1(除去原点).
(3)解:由直线与椭圆联立,得(a+m2)x2+2mx-1=0,
∴x1+x2=-$\frac{2m}{a+{m}^{2}}$,x1x2=-$\frac{1}{a+{m}^{2}}$,
y1y2=(mx1+1)(mx2+1)=m2x1x2+m(x1+x2)+1=$\frac{a-2{m}^{2}}{a+{m}^{2}}$,
由于OA⊥OB,则有x1x2+y1y2=0,即为-$\frac{1}{a+{m}^{2}}$+$\frac{a-2{m}^{2}}{a+{m}^{2}}$=0,
解得,a=2m2-1.
检验:判别式△>0,成立.
故存在直线l:y=±$\sqrt{\frac{a+1}{2}}$(x+1),使OAPB为矩形.

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\sqrt{x}$+1,若f(x)=3,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,双曲线Γ:$\frac{{x}^{2}}{3}$-y2=1的左、右焦点分别为F1,F2,过F2作直线l交y轴于点Q.
(1)当直线l平行于Γ的一条渐近线时,求点F1到直线l的距离;
(2)当直线l的斜率为1时,在Γ的右支上是否存在点P,满足$\overrightarrow{{F}_{1}P}•\overrightarrow{{F}_{1}Q}$=0?若存在,求出P点的坐标;若不存在,说明理由;
(3)若直线l与Γ交于不同两点A、B,且Γ上存在一点M,满足$\overrightarrow{OA}$+$\overrightarrow{OB}$+4$\overrightarrow{OM}$=$\overrightarrow{0}$(其中O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,1),设u=$\overrightarrow{a}$+k$\overrightarrow{b}$,v=2$\overrightarrow{a}$-$\overrightarrow{b}$,若u∥v,则实数k的值为(  )
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求不等式组解集$\left\{\begin{array}{l}{(2-x)(2x+4)≥0}\\{-3{x}^{2}+2x+1<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α终边过点P(4,-3),则下列各式中正确的是(  )
A.sinα=$\frac{3}{5}$B.cosα=-$\frac{4}{5}$C.tanα=-$\frac{3}{4}$D.tanα=-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,BC=6,CA=8,AB=10,M是边AB上的动点(含A、B),若存在实数λ,μ使得$\overrightarrow{CM}$=λ$\overrightarrow{CA}$+μ$\overrightarrow{CB}$,则|λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$|的最大值是(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正项数列{an}的前n项和为Sn,且满足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn=$\frac{1}{{a}_{n}\sqrt{{a}_{n-1}}+{a}_{n-1}\sqrt{{a}_{n}}}$(n≥2,n∈N*),数列{bn}前n项和为Tn
(3)若数列{cn}满足lgc1=$\frac{1}{3}$,lgcn=$\frac{{a}_{n-1}}{{3}^{n}}$(n≥2,n∈N*),试问是否存在正整数p,q,(其中1<p<q),使c1,cp,cq成等比数列?若存在,求出所有满足条件的数组(p,q),若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二阶矩阵M有特征值λ=8及其对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩阵M对应的变换将点A(-1,2)变换成A′(-2,4).
(1)求矩阵M;
(2)设直线l在M-1对应的变换作用下得到了直线m:x-y=6,求l的方程.

查看答案和解析>>

同步练习册答案