精英家教网 > 高中数学 > 题目详情
10.2016年全国高考将有25个省市使用新课标全国卷,其中数学试卷最后一题为选做题,即要求考生从选修4-1(几何证明选讲)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)的三道题中任选一道题作答.某数学老师教了高三A、B两个理科班共100名学生,为了了解所教学生对这三道题的选做情况,他对一次数学模拟考试进行了统计,结果如表所示:
课程
人数
班级
选修4-1选修4-4选修4-5
A10a15
B1020b
若从100名学生中随机抽取一名,他选做选修4-4的概率为$\frac{9}{20}$.
(Ⅰ)求a、b的值,分别计算两个班没有选选修4-5的概率;
(Ⅱ)若从A、B两班分别随机抽取2名学生,对其试卷的选做题进行分析,记4名学生中选做4-1的人数为随机变量X,求X的分布列和数学期望(视频率为概率,例如:A班选做4-1的每个学生被抽取到的概率均为$\frac{1}{5}$).

分析 (Ⅰ)从100名学生中随机抽取一名,他选做选修4-4的概率为$\frac{9}{20}$,由此列出方程级求出a,从而能求出b,进而能求出A班没有选做选修4-5的概率和B班没有选做选修4-5的概率.
(Ⅱ)由题意知,A、B两班每人选选修4-1的概率均为$\frac{1}{5}$,随机变量X服从二项分布X~B(4,$\frac{1}{5}$),由此能求出X的分布列和数学期望.

解答 解:(Ⅰ)∵从100名学生中随机抽取一名,他选做选修4-4的概率为$\frac{9}{20}$,
∴由题意,得:$\frac{a+20}{100}=\frac{9}{20}$,解得a=25,
∴b=100-(15+25+10+10+20)=20,
A班没有选做选修4-5的概率${P_1}=\frac{10+25}{50}=\frac{7}{10}$,
B班没有选做选修4-5的概率p2=$\frac{10+20}{50}$=$\frac{3}{5}$.
(Ⅱ)由题意知,A、B两班每人选选修4-1的概率均为$\frac{1}{5}$,
∴随机变量X服从二项分布,即 X~B(4,$\frac{1}{5}$),
∴P(X=i)=${C}_{4}^{i}(\frac{1}{5})^{i}(1-\frac{1}{5})^{4-i}$,i=0,1,2,3,4,
∴X的分布列为:

X01234
P$\frac{256}{625}$$\frac{256}{625}$$\frac{96}{625}$$\frac{16}{625}$$\frac{1}{625}$
∴$E(X)=4×\frac{1}{5}=\frac{4}{5}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧$\widehat{BD}$于点G,交弦BD于点E,F为线段BC的中点.
(Ⅰ)证明:平面OGF∥平面CAD;
(Ⅱ)若二面角C-AB-D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在△ABC中,A,B,C所对的边分别为a,b,c,R为△ABC外接圆的半径,若a=1,$\frac{3}{2}$sin2B+$\frac{7}{2}$sin2C-sin2A=sinAsinBsinC,则R的值为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sin(α+$\frac{π}{5}$)=$\frac{\sqrt{3}}{3}$,则cos(2α+$\frac{2π}{5}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将g(x)=cos(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位后得到函数f(x)=sin(2x+φ)(|φ|<π)的图象,则φ的值为(  )
A.-$\frac{2π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校高中每个年级只有三个班,且同一年级的三个班的羽毛球水平相当,各年级举办班级羽毛球比赛时,都是三班得冠军的概率为(  )
A.$\frac{1}{27}$B.$\frac{1}{9}$C.$\frac{1}{8}$D.$\frac{1}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx+$\frac{a}{x}$,a∈R.
(Ⅰ)当a=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数;
(Ⅲ)若对任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow{b}$>=150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.1B.13C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(sin($\frac{ω}{2}$x+φ),1),$\overrightarrow{b}$=(1,cos($\frac{ω}{2}$x+φ))(ω>0,0<φ<$\frac{π}{4}$),记函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$).若函数y=f(x)的周期为4,且经过点M(1,$\frac{1}{2}$).
(1)求ω的值;
(2)当-1≤x≤1时,求函数f(x)的最值.

查看答案和解析>>

同步练习册答案