分析 (I)利用中位线定理和圆的性质分别证明OF∥AC,OG∥AD,故而得出平面OGF∥平面CAD;
(II)连结DG,则可证四边形OADG是菱形,OC⊥平面ABD,以O为原点建立空间直角坐标系,求出平面BCD的法向量$\overrightarrow{n}$和$\overrightarrow{FG}$的坐标,则直线FG与平面BCD所成角的正弦值为|cos<$\overrightarrow{FG},\overrightarrow{n}$>|.
解答
证明:(Ⅰ)∵OF为△ABC的一条中位线
∴OF∥AC,又OF?平面ACD,AC?平面ACD,
∴OF∥平面ACD.
又∵OG为∠DOB的平分线,∴OG⊥BD,
∵AB是⊙O的直径,∴AD⊥BD,
∴OG∥AD,又OG?平面ACD,AD?平面ACD,
∴OG∥平面ACD,
又∵OG,OF为平面OGF内的两条相交直线,
∴平面OGF∥平面CAD
(Ⅱ)∵O为AB的中点,∴CO⊥AB,
∵平面CAB⊥平面DAB,平面CAB∩平面DAB=AB,OC?平面ABC,
∴CO⊥平面DAB,
又Rt△DAB中,AB=2,∠DAB=60°,∴AD=1,又OG∥AD,OG=1,OA=1,
∴四边形ADGO为菱形,∠AOG=120°,
设DG中点为M,则∠AOM=90°,即OM⊥OB,
∴直线OM,OB,OC两两垂直,
以O为原点,以OM,OB,OC为坐标轴建立如图所示的空间直角坐标系O-xyz.
则B(0,1,0),C(0,0,1),D($\frac{\sqrt{3}}{2}$,$-\frac{1}{2},0)$,G($\frac{\sqrt{3}}{2}$,$\frac{1}{2},0)$,F(0,$\frac{1}{2}$,$\frac{1}{2}$).
∴$\overrightarrow{FG}$=($\frac{\sqrt{3}}{2}$,$0,-\frac{1}{2})$,$\overrightarrow{BC}$=(0,-1,1),$\overrightarrow{BD}$=($\frac{\sqrt{3}}{2}$,-$\frac{3}{2}$,0).
设平面BCD的法向量为$\overrightarrow{n}$=(x,y,z),则$\overrightarrow{n}•\overrightarrow{BC}=0,\overrightarrow{n}•\overrightarrow{BD}=0$,
∴$\left\{\begin{array}{l}{-y+z=0}\\{\frac{\sqrt{3}}{2}x-\frac{3}{2}y=0}\end{array}\right.$,令y=1,$\overrightarrow{n}$=($\sqrt{3}$,1,1).
∴$\overrightarrow{FG}•\overrightarrow{n}$=1,|$\overrightarrow{FG}$|=1,$\overrightarrow{n}$=$\sqrt{5}$.
∴$cos<\overrightarrow{FG},\overrightarrow{n}>=\frac{\overrightarrow{FG•}\overrightarrow{n}}{\left|\overrightarrow{FG}\right|.\left|\overrightarrow{n}\right|}$=$\frac{\sqrt{5}}{5}$.
∴直线FG与平面BCD所成角的正弦值为$\frac{\sqrt{5}}{5}$.
点评 本题考查了面面平行的判定,空间角的计算,空间向量在立体几何中的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2+b2≤1 | B. | a2+b2≥1 | C. | $\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1 | D. | $\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,e+1) | B. | [0,2e-1) | C. | [0,e) | D. | [0,e-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧q | C. | ¬p∧q | D. | ¬p∨¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 课程 人数 班级 | 选修4-1 | 选修4-4 | 选修4-5 |
| A | 10 | a | 15 |
| B | 10 | 20 | b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com