精英家教网 > 高中数学 > 题目详情
5.已知x∈(0,2),关于x的不等式$\frac{x}{{e}^{x}}$<$\frac{1}{k+2x-{x}^{2}}$恒成立,则实数k的取值范围为(  )
A.[0,e+1)B.[0,2e-1)C.[0,e)D.[0,e-1)

分析 根据题意显然可知k≥0,整理不等式得出k<$\frac{{e}^{x}}{x}$+x2-2x,利用构造函数f(x)=$\frac{{e}^{x}}{x}$+x2-2x,通过导函数得出函数在区间内的单调性,求出函数的最小值即可.

解答 解:依题意,k+2x-x2>0,即k>x2-2x对任意x∈(0,2)都成立,
∴k≥0,
∵$\frac{x}{{e}^{x}}$<$\frac{1}{k+2x-{x}^{2}}$,
∴k<$\frac{{e}^{x}}{x}$+x2-2x,
令f(x)=$\frac{{e}^{x}}{x}$+x2-2x,f'(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$+2(x-1)=(x-1)($\frac{{e}^{x}}{{x}^{2}}$+2),
令f'(x)=0,解得x=1,
当x∈(1,2)时,f'(x)>0,函数递增,
当x∈(0,1)时,f'(x)<0,函数递减,
∴f(x)的最小值为f(1)=e-1,
∴0≤k<e-1,
故选:D.

点评 考查了构造函数,利用导函数求函数的单调性和函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知{an}是等差数列,满足a1=2,a4=14,数列{bn}满足b1=1,b4=6,且{an-bn}是等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若?n∈N*,都有bn≤bk成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求数列{an}的通项公式;
(2)求a1+a4+a7+…+a3n+13
(3)求{(30-an)•2n}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在直角三棱柱ABC-A1B1C1中,AB⊥BC,P是A1C1的中点,AB=BC=kPA,若直线PA与平面BB1C1C所成角的正弦值为$\frac{1}{4}$,则k的值为(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧$\widehat{BD}$于点G,交弦BD于点E,F为线段BC的中点.
(Ⅰ)证明:平面OGF∥平面CAD;
(Ⅱ)若二面角C-AB-D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB,则角B的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在钝角△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=$\frac{{5\sqrt{3}}}{14}$,则△ABC的面积等于(  )
A.$\frac{{25\sqrt{3}}}{2}$B.$\frac{{15\sqrt{3}}}{2}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点C(1,5),点P(x,y)在不等式组$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+5y≤0}\\{x-y-2≤0}\end{array}\right.$,表示的平面区域内(含边界),则|PC|的最小值为(  )
A.$\sqrt{26}$B.$\sqrt{26}$-1C.$\sqrt{26}$+1D.$\sqrt{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校高中每个年级只有三个班,且同一年级的三个班的羽毛球水平相当,各年级举办班级羽毛球比赛时,都是三班得冠军的概率为(  )
A.$\frac{1}{27}$B.$\frac{1}{9}$C.$\frac{1}{8}$D.$\frac{1}{36}$

查看答案和解析>>

同步练习册答案